Calcium–Pectin Chemistry and Biomechanics: Biological Background and Mathematical Modelling

  • Mariya PtashnykEmail author
  • Henry R. Allen


In this chapter the impact of pectin and calcium-pectin chemistry on the mechanical properties, morphogenesis, and growth of plant cell walls and tissues is considered. We combine an overview of the underlying biological processes with the formulation of and numerical simulation results for mathematical models for interactions between the chemistry and mechanical properties and growth of plant cell walls. The role of the microscopic structure of plant cell walls and pectin-related cell wall signalling pathways in the interplay between the pectin chemistry and mechanics is also discussed.


  1. Braybrook SA, Peaucelle A (2013) Mechano-chemical aspects of organ formation in arabidopsis thaliana: the relationship between auxin and pectin. PloS ONE 8:e57813CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burgert I, Fratzl P (2009) Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr Comp Biol 49(1):69CrossRefPubMedGoogle Scholar
  3. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900CrossRefGoogle Scholar
  4. Camardella L, Carratore V, Ciardiello MA, Servillo L, Balestrieri C, Giovane A (2000) Kiwi protein inhibitor of pectin methylesterase amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565CrossRefPubMedGoogle Scholar
  5. Cameron RG, Luzio GA, Goodner K, Williams MAK (2008) Demethylation of a model homogalacturonan with a salt-independent pectin methylesterase from citrus: I. Effect of ph on demethylated block size, block number and enzyme mode of action. Carbohydr Polym 71:287–299CrossRefGoogle Scholar
  6. Cameron RG, Luzio GA, Vasu P, Savary BJ, Williams MAK (2011) Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. Nanostructural characterization, enzyme mode of action, and effect of ph. J Agric Food Chem 59:2717–2724CrossRefPubMedGoogle Scholar
  7. Ciarlet PG (1988) Mathematical elasticity. Volume I: three-dimensional elasticity. North-HollandCrossRefGoogle Scholar
  8. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861CrossRefPubMedGoogle Scholar
  9. Denès J-M, Baron A, Renard CMGC, Péan C, Drilleau J-F (2000) Different action patterns for apple pectin methylesterase at ph 7.0 and 4.5. Carbohydr Res 327:385–393CrossRefPubMedGoogle Scholar
  10. Dick-Pérez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state nmr studies of the structure and dynamics of pectic polysaccharides in uniformly \(13^{\text{ c }}\)-labeled arabidopsis primary cell walls. Magn Reson Chem 50:539–550CrossRefPubMedGoogle Scholar
  11. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state nmr. Biochemistry 50:989–1000CrossRefPubMedGoogle Scholar
  12. Dumais J, Shaw SL, Charles RS, Long SR, Ray PM (2006) An anisotropic- viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209–222CrossRefPubMedGoogle Scholar
  13. Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen proto- plasts. Plant Physiol 135:1398–1406CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ezaki N, Kido N, Takahashi K, Katou K (2005) The role of wall Ca\(^{2+}\) in the regulation of wall extensibility during the acid-induced extension of soybean hypocotyl cell walls. Plant Cell Physiol 46:1831–1838CrossRefPubMedGoogle Scholar
  15. Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMOB J 26:3879–3887CrossRefGoogle Scholar
  16. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkCrossRefGoogle Scholar
  17. Guillon F, Mose A, Quemener B, Bouchet B, Devaux M-F, Alvarado C, Lahaye M (2017) Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Plant Sci 257:48–62CrossRefPubMedGoogle Scholar
  18. Gurtin ME, Fried E, Anand L (2009) The mechanics and thermodynamics of continua. Cambridge University PressGoogle Scholar
  19. Hayot CM, Forouzesh E, Goel A, Avramova A, Turner J-A (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Biol 63:2525–2540Google Scholar
  20. Huang R, Becker AA, Jones IA (2012) Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J Mech Phys Solids 60:750–783CrossRefGoogle Scholar
  21. Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. PNAS 99:16319–16324CrossRefPubMedGoogle Scholar
  22. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:153–164Google Scholar
  23. Jarvis MC, Briggs SP, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989CrossRefGoogle Scholar
  24. Knox JP (1992) Cell adhesion, cell separation and plant morphogenesis. Plant J 2:137–141CrossRefGoogle Scholar
  25. Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS ONE 6:e18549CrossRefPubMedPubMedCentralGoogle Scholar
  26. Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792CrossRefPubMedGoogle Scholar
  27. Lin D, Lopez-Sanchez P, Gidley MJ (2016) Interactions of pectins with cellulose during its synthesis in the absence of calcium. Food Hydrocoll 52:57–68CrossRefGoogle Scholar
  28. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275CrossRefPubMedGoogle Scholar
  29. McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040CrossRefPubMedPubMedCentralGoogle Scholar
  30. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6(5):414–419CrossRefGoogle Scholar
  31. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277CrossRefPubMedGoogle Scholar
  32. O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan ii: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139CrossRefGoogle Scholar
  33. Orfila C, Seymour GB, Willats WGT, Huxham IM, Jarvis MC, Dover CJ, Thompson AJ, Knox JP (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1\({\rightarrow }\)5)-?-l-arabinan in the pericarp ofcnr, a ripening mutant of tomato. Plant Physiol 126(1):210–221CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ortega JKE (1990) Governing equations for plant cell growth. Physiol Plant 79:116–121CrossRefGoogle Scholar
  35. Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. BioSystems 109:397–402CrossRefPubMedGoogle Scholar
  36. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of solanum chacoense. Planta 220(22):582–592CrossRefPubMedGoogle Scholar
  37. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in arabidopsis. Curr Biol 21:1720–1726CrossRefPubMedGoogle Scholar
  38. Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948CrossRefPubMedGoogle Scholar
  39. Peaucelle A, Wightman R, Höfte H (2015) The control of growth symmetry breaking in the arabidopsis hypocotyl. Curr Biol 25:1746–1752CrossRefPubMedGoogle Scholar
  40. Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Assoumou Ndong Y, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou J-P, Höfte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown arabidopsis hypocotyls. New Phytol 188(3):726–739CrossRefPubMedGoogle Scholar
  41. Popper ZA, Fry SC (2008) Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227:781–794CrossRefPubMedGoogle Scholar
  42. Proseus TE, Boyer JS (2006) Calcium pectate chemistry controls growth rate of chara corallina. J Exp Bot 57(22):3989–4002CrossRefPubMedGoogle Scholar
  43. Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in chara corallina. J Exper Bot 58(15/16):4283–4292CrossRefGoogle Scholar
  44. Proseus TE, Boyer JS (2008) Calcium pectate chemistry causes growth to be stored in chara corralling: a test of the pectate cycle. Plant Cell Environ 31:1147–1155CrossRefPubMedGoogle Scholar
  45. Proseus TE, Boyer JS (2012) Calcium deprivation disrupts enlargement of chara corralling cells: further evidence for the calcium pectate cycle. J Exp Bot 63(10):3953–3958CrossRefPubMedPubMedCentralGoogle Scholar
  46. Proseus TE, Ortega JKE, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 110:775–784CrossRefGoogle Scholar
  47. Ptashnyk M, Seguin B (2015) Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics. ESAIM Math Modell Num Anal 50:593–631CrossRefGoogle Scholar
  48. Rhee SY, Osborne E, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of ara- bidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell-wall degradation. Plant Physiol 133:1170–1180CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rodriguez EK, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissue. J Biomech 27:455–467CrossRefPubMedGoogle Scholar
  50. Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853CrossRefPubMedPubMedCentralGoogle Scholar
  51. Stephenson MB, Hawes MC (1994) Correlation of pectin methylesterase activity in root caps of pea with root border cell separation. Plant Physiol 106:739–745CrossRefPubMedPubMedCentralGoogle Scholar
  52. Thimm JC, Burritt DJ, Ducker WA, Melton LD (2009) Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J Struct Biol 168:337–344CrossRefPubMedGoogle Scholar
  53. Virk SS, Cleland RE (1988) Calcium and the mechanical properties of soybean hypocotyl cell walls: possible role of calcium and protons in cell-wall loosening. Planta 176:60–67CrossRefPubMedGoogle Scholar
  54. Wang T, Bum Park Y, Cosgrove DJ, Hong M (2015) Evidence from solid-state nuclear magnetic resonance. Cellulose-pectin spatial contacts are inherent to never-dried arabidopsis primary cell walls. Plant Physiol 168:871–884Google Scholar
  55. Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856CrossRefGoogle Scholar
  56. White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899CrossRefPubMedGoogle Scholar
  57. Willats WGT, Knox P, Dalgaard Mikkelsen J (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104CrossRefGoogle Scholar
  58. Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27CrossRefPubMedGoogle Scholar
  59. Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276(22):19404–19413CrossRefPubMedGoogle Scholar
  60. Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249(2):169–175CrossRefGoogle Scholar
  61. Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Ann Rev Plant Biol 63:381–407CrossRefGoogle Scholar
  62. Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860CrossRefPubMedGoogle Scholar
  63. Wolf S, Mravec J, Greiner S, Mouille G, Höfte H (2012) Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22:1732–1737CrossRefPubMedGoogle Scholar
  64. Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, Schürholz A-K, Augustin S, Keinath N, Rausch T, Greiner S, Schumacher K, Harter K, Zipfel C, Höfte H (2014) A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. PNAS 111(42):15261–15266CrossRefPubMedGoogle Scholar
  65. Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64:657–667CrossRefPubMedGoogle Scholar
  66. Zsivanovits G, MacDougall AJ, Smith AC, Ring SG (2004) Material properties of concentrated pectin networks. Carbohydr Res 339:1217–1322CrossRefGoogle Scholar
  67. Zykwinska A, Thibault J-F, Ralet M-C (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym 74:957–961CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of MathematicsUniversity of DundeeDundeeUK
  2. 2.Department of MathematicsHeriot-Watt UniversityEdinburghUK

Personalised recommendations