Advertisement

Using Modeling to Understand the Hygromechanical and Hysteretic Behavior of the S2 Cell Wall Layer of Wood

  • Dominique Derome
  • Karol Kulasinski
  • Chi Zhang
  • Mingyang Chen
  • Jan Carmeliet
Chapter

Abstract

To understand moisture sorption and swelling of wood requires revealing the behavior at the S2 cell wall layer, one of the layers of the secondary cell wall, at the atomistic scale. Difficulties in experimentally determining the organization and properties of S2 layer at such a small scale are a stumbling block for understanding of swelling and sorption in their full complexity. Recent works using atomistic modeling (Molecular Dynamics (MD) and Grand Canonical Monte Carlo) provide complementary insights. The linear dependence between moisture content, swelling, and porosity change is found to be correlated with the number and location of water–polymer hydrogen bonds within the system. Such information is upscaled for general use within a poromechanical framework. This chapter summarizes recent new physical insights in the sorption and swelling behavior of the S2 cell wall layer, stemming from validated MD work. The presented methodology is also used to unravel other moisture-related mechanisms of wood, such as hysteretic behavior.

Keywords

S2 layer composite material Cellulose (crystalline and paracrystalline) Hemicelluloses Lignins Hygromechanical behavior Hysteresis Experimental data Molecular dynamics (atomistic modeling) Sorption and swelling of wood 

References

  1. Bader T, Hofstetter K, Hellmich C, Eberhardsteiner J (2011) The poroelastic role of water in cell walls of the hierarchical composite softwood. Acta Mechanica 217:75–100CrossRefGoogle Scholar
  2. Beever DK, Valentine L (1958) Studies on the sorption of moisture by polymers. Part IV. Interval and integral sorption of water vapor by polymers. J Polym Sci A 32:521–522Google Scholar
  3. Berendsen HJC, POstma JPM, van Gunsteren WF, DiNola ARHJ (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  4. Boutelje JB (1962) The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity. Holzforschung 16:33–46CrossRefGoogle Scholar
  5. Brochard L, Vandamme M, Pellenq RJM (2012) Poromechanics of microporous media. J Mech Phys Solids 60:606–622CrossRefGoogle Scholar
  6. Carmeliet J, Derome D, Dressler M, Guyer R (2013) Nonlinear poro-elastic model for unsaturated porous solids. J Appl Mech 80(2):020909CrossRefGoogle Scholar
  7. Charlier L, Mazeau K (2012) Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry. J Phys Chem B 116(14):4163–4174CrossRefPubMedGoogle Scholar
  8. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131CrossRefPubMedPubMedCentralGoogle Scholar
  9. Derome D, Griffa M, Koebel M, Carmeliet J (2011) Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. J Struct Biol 173:180–190CrossRefPubMedGoogle Scholar
  10. Derome D, Rafsanjani A, Patera A, Guyer R, Carmeliet J (2012) Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography. Phil Mag 92:3680–3698CrossRefGoogle Scholar
  11. Dinwoodie JM (2000) Timber, its nature and behaviour, 2nd. E & FN Spon, London, New York, EnglandGoogle Scholar
  12. Eichhorn S (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315 CrossRefGoogle Scholar
  13. Fahlén J, Salmén L (2005) Pore and matric distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromol 6(1):433–438CrossRefGoogle Scholar
  14. Forest Products Laboratory (2010) Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 508 pGoogle Scholar
  15. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefPubMedGoogle Scholar
  16. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053CrossRefGoogle Scholar
  17. Höfter H, Gonneau M, Vernhettes S (2007) 2.22 Biosynthesis of cellulose. In: Kalerming H (ed) Comprehensive glycoscience. Oxford Elsevier, pp 737–763CrossRefGoogle Scholar
  18. Jin K, Qin Z, Buhler M (2015) Molecular deformation mechanisms of the wood cell wall material. J Mech Behav Biomed Mater 42:198–206CrossRefPubMedGoogle Scholar
  19. Kulasinski K (2015) Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations. Dissertation ETH No. 23046, ETH ZurichGoogle Scholar
  20. Kulasinski K, Keten S, Churakov SV, Derome D, Carmeliet J (2014a) A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose 21:1103–1116CrossRefGoogle Scholar
  21. Kulasinski K, Keten S, Churakov S, Guyer R, Derome D, Carmeliet J (2014b) Molecular mechanism of moisture-induced transition in amorphous cellulose. ACS Macro Lett 3:1037–1040CrossRefGoogle Scholar
  22. Kulasinski K, Guyer R, Keten S, Derome D, Carmeliet J (2015a) Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 48:2793–2800CrossRefGoogle Scholar
  23. Kulasinski K, Guyer R, Derome D, Carmeliet J (2015b) Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations. Phys Rev E 92:022605CrossRefGoogle Scholar
  24. Kulasinski K, Guyer R, Derome D, Carmeliet J (2015c) Water adsorption in wood microfibril: role of the crystalline-amorphous cellulose. Biomacromol 16:2972–2978CrossRefGoogle Scholar
  25. Kulasinski K, Guyer R, Derome D, Carmeliet J (2015d) Water diffusion in hydrophilic systems: a stop and go process. Langmuir 31:10843–10849CrossRefPubMedGoogle Scholar
  26. Lins RD, Hünenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26:1400–1412CrossRefPubMedGoogle Scholar
  27. Mihranyan A, Llogostera AP, Karmhag R, Stromme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433–442CrossRefPubMedGoogle Scholar
  28. Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. PhD thesis, Ruhr-Universität Bochum, Bochum, GermanyGoogle Scholar
  29. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMedGoogle Scholar
  30. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676CrossRefPubMedGoogle Scholar
  31. Patera A (2014) 3D experimental investigation of the hygro-mechanical behaviour of wood at cellular and sub-cellular scales. Diss. ETH no. 22230, ETHZ, ZurichGoogle Scholar
  32. Patera A, Derome D, Griffa M, Carmeliet J (2013) Hysteresis in swelling and in sorption of wood tissue. J Struct Biol 182:226–234CrossRefPubMedGoogle Scholar
  33. Petridis L, Schulz R, Smith JC (2011a) Simulation analysis of the temperature dependence of lignin structure and dynamics. J Am Chem Soc 133:20277–20287CrossRefPubMedGoogle Scholar
  34. Petridis L, Pingali SV, Urban V, Heller WT, O’Neill HM, Foston M, Smith JC (2011b) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83(6):061911 Google Scholar
  35. Petridis L, Smith JC (2009) A molecular mechanics force field for lignin. Comp Chem 30:457–467CrossRefPubMedGoogle Scholar
  36. Plimpton S (1995) Fast parallel algorithms for ahort-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  37. Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46:310–320CrossRefGoogle Scholar
  38. Rafsanjani A, Derome D, Carmeliet J (2013a) Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. Compos Struct 95:607–611CrossRefGoogle Scholar
  39. Rafsanjani A, Lanvermann Derome D, Niemz P, Carmeliet J (2013b) Multiscale analysis of free swelling of Norway spruce. Compos Part A Appl Sci Manuf 54:70–78CrossRefGoogle Scholar
  40. Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling of latewood cell wall micropillars reveals ultra-structural anisotropy. Interface 11:20140126PubMedPubMedCentralGoogle Scholar
  41. Rafsanjani A, Derome D, Carmeliet J (2015) Poromechanical modeling of moisture induced swelling anisotropy of cellular tissues of softwoods. RCS Adv 5:3560–3566Google Scholar
  42. Salmén L (2004) Micromechanical understanding of the cell-wall structure. C.R. Biologies 327:873–880CrossRefPubMedGoogle Scholar
  43. Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Cost action E35 2004-2008: wood machining—micromechanics and fracture. Holzforschung 63:121–129CrossRefGoogle Scholar
  44. Sangha AK, Petridis L, Smith JC, Ziebell A, Parks JM (2012) Molecular simulation as a tool for studying lignin. Environ Prog Sustain Energy 31(1):47–54CrossRefGoogle Scholar
  45. Smith PE, van Gunsteren WF (1994) Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. J Chem Phys 100:3169–3174CrossRefGoogle Scholar
  46. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab Initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987CrossRefGoogle Scholar
  47. Teleman O, Jönsson B, Engström S (1987) A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol Phys 60:193–203 CrossRefGoogle Scholar
  48. Wagenführ A, Scholz F (2012) Taschenbuch des Holztechnik. Carl Hanser Verlag, MunichCrossRefGoogle Scholar
  49. Watanabe U, Norimoto M, Morooka T (2000) Cell wall thickness and tangential Young’s modulus in coniferous early wood. J Wood Sci 46:109–114CrossRefGoogle Scholar
  50. Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116CrossRefGoogle Scholar
  51. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. nonpolar gases. J Chem Phys 22:1420–1426CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dominique Derome
    • 1
  • Karol Kulasinski
    • 2
  • Chi Zhang
    • 1
    • 3
  • Mingyang Chen
    • 1
    • 3
  • Jan Carmeliet
    • 3
  1. 1.Laboratory of Multiscale Studies of Building Physics, EmpaDübendorfSwitzerland
  2. 2.Department of Geochemistry, Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Chair of Building Physics, Department of Mechanical and Process EngineeringETH ZürichZürichSwitzerland

Personalised recommendations