Advertisement

Cafe Arabica Coffea arabica L.

  • M. Elena Aguilar
  • J. Luis Ortiz
  • Francisco Mesén
  • L. Diego Jiménez
  • Fernando Altmann
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

Somatic embryogenesis is a technique that has been used in Central America for the multiplication of Coffea arabica F1 hybrids since its creation. The coffee breeding program for Central America—PROMECAFE (1992–2006)–was implemented with the participation of CATIE, CIRAD and the coffee institutes in the region. The selected hybrids are more vigorous than the traditional ones with higher value in productivity, precocity, tolerance to leaf rust and cup quality. Although somatic embryogenesis is the ideal technique for the multiplication of these materials; the process is intensive and of long duration, so the final cost per plant is very high in comparison with the plants obtained from seeds. These factors and others have limited the transfer of these hybrids to the producers who need to renew their plantations. To facilitate this process, CATIE established a two-stage multiplication strategy: 1-The regeneration of juvenile mother plants by somatic embryogenesis; and 2-The establishment of clonal gardens in the greenhouse for horticultural multiplication. This innovation allows the rapid multiplication of the hybrids and reduces the cost per plant produced in the greenhouse.

Notes

Acknowledgements

This work was made possible thanks in part to the support provided by the United States Department of Agriculture´s Foreign Agricultural Service under the terms of Award No. 59-314-4-016, and support from the National Institute of Forest Science (NIFoS) of the Republic of South Korea. The authors are also grateful to the research staff of the Biotechnology Laboratory and the Forest Seed Bank of CATIE for their invaluable work.

References

  1. Aguilar ME, Ortiz JL, Mesén F, Altmann F (2016) Embriogénesis somática para la multiplicación clonal de híbridos F1 de café (Coffea arabica) y escalamiento industrial por técnicas hortícolas: experiencia del CATIE. In: abstracts of the IX Encuentro REDBIO 2016-PERÚ, Biotecnología para el Desarrollo y Uso Sostenible de la Biodiversidad, Lima, 27 June–1 July 2016Google Scholar
  2. Aguilar ME, Ortiz JL, Kim YW, Kim JA, Moon HK (2017) Contributions of somatic embryogenesis and other in vitro propagation techniques to the genetic improvement of tropical woody species: Coffee arabica, Tectona grandis and Gmelina arborea. In Proceedings of the Fourth International Conference of the IUFRO Unit 2.09.02 Somatic Embryogenesis and Other Vegetative Propagation Technologies, La Plata, Buenos Aires, Argentina, 19–23 September. pp 59–78Google Scholar
  3. Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effects of temporary immersion of explants. Plant Cell Tissue Organ Cult 8:185–196Google Scholar
  4. Barry-Etienne D, Bertrand B, Vásquez N, Etienne H (2002) Comparison of somatic embryogenesis-derived Coffee (Coffee arabica L.) plantlest regenerated in vitro or ex vitro: morphological, mineral and water characteristics. Ann Bot 90:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berthouly M, Michaux-Ferriére N (1996) High frequency somatic embryogenesis in Coffea canephora: induction conditions and histological evolution. Plant Cell Tissue Organ Cult 44:169–176CrossRefGoogle Scholar
  6. Berthouly M, Dufour M, Alvard D, Carasco C, Alemano L, Teisson C (1995) Coffee micropropagation in liquid medium using temporary immersión system. In: ASIC (ed) 16th International science colloquium coffee, ASIC, Vevey, Switzerland, pp 514–519Google Scholar
  7. Bertrand B, Etienne E, Cilas C, Charrier A, Baradat P (2005) Coffea arabica hybrid performance for yield, fertility and bean weight. Euphytica 141:255–262CrossRefGoogle Scholar
  8. Bertrand B, Etienne E, Alpizar E, Lara L, SantaCreo R, Hidalgo H, Quijano JM, Montagnon C, Georget F (2011) Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica 181:147–158CrossRefGoogle Scholar
  9. Bobadilla R, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, Herrera JC, Santoni S, Lashermes P, Simpsom J (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP, and the phenotypic variation rate. PLoS One 8:e56372.  https://doi.org/10.1371/journal.pone.0056372CrossRefGoogle Scholar
  10. Bobadilla R, Cenci A, Guyot R, Bertrand B, Georget F, Dechamp E, Herrera JC, Aribi J, Lashermes P, Etienne H (2015) Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell Tissue Organ Cult 122:517–531CrossRefGoogle Scholar
  11. Davis T (1988) Photosynthesis during adventitious rooting. In: Davis TD, Haissig BE, Sankhla N (eds) Adventitious root formation in cuttings. Advances in Plant Sciences Series, vol 2. Disocorides Press, Portland, Oregon, USA, pp 79–87Google Scholar
  12. Dublin P (1984) Techniques de reproduction vegetative in vitro et amelioration genetique chez le cafeiers cultives. Café Cacao Thé 28:231–244Google Scholar
  13. Ducos JP, Labbe G, Lambot C, Petiard V (2007) Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In vitro Cell Dev Biol_Plant 43:652–659CrossRefGoogle Scholar
  14. Duicela LA, Corral R, Fernández F, Macías A, Muñoz R, Shiguango D (2006) Reproducción de plantas clonales de café Robusta. Cofernac/Pronorte/USAID, Ecuador, p 17Google Scholar
  15. Etienne H, Bertrand B (2001) Trueness-to-type and agronomic characteristics of Coffea arabica trees micropropagated by the embryogenic cell suspension technique. Tree Physiol 21:1031–1038CrossRefPubMedGoogle Scholar
  16. Etienne E, Solano W, Pereira A, Barry-Etienne D, Bertrand B, Anthony F, Cote F, Berthouly M (1997) Utilización de la embriogénesis somática en medio líquido para la propagación masal de los híbridos F1 de Coffea arabica. In: Bertrand B, Rapidel B (eds) Desafíos de la caficultura centroamericana. IICA Publishers, San José Costa Rica, pp 253–261Google Scholar
  17. Etienne H, Barry-Etienne D, Vásquez N, Berthouly M (1999) Aportes de la biotecnología al mejoramiento genético del café: el ejemplo de la multiplicación por embriogénesis somática de híbridos F1 en América Central. In: Bertrand B, Rapidel B (eds) Desafíos de la caficultura centroamericana. IICA Publishers, San José Costa Rica, pp 457–496Google Scholar
  18. Etienne H, Anthony F, Dussert S, Fernández D, Lashermes P, Bertrand B (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In vitro Cell Dev Biol_Plant 38:129–138CrossRefGoogle Scholar
  19. Etienne H, Bertrand B, Montagnon C, Bobadilla R, Dechamp E, Jourdan I, Alpizar E, Malo E, Georget F (2012) Un exemple de trasfert de technologie reussi dans le domaine de la micropropagation: la multiplication de Coffea arabica par embryogenese somatique. Cah Agric 21:115–124Google Scholar
  20. Etienne H, Bertrand B, Georget F, Lartaud M, Montes F, Dechamp E, Verdeil JL, Barry-Etienne D (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653CrossRefPubMedGoogle Scholar
  21. Etienne-Barry D, Bertrand B, Vásquez N, Etienne H (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep 19:111–117CrossRefGoogle Scholar
  22. Georget F, Courtel P, Malo Garcia E, Hidalgo M, Alpízar E, Breitler JC, Bertrand B, Etienne H (2017) Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: a boost for somatic embryogenesis. Scientia Horticulturae 216:177–185CrossRefGoogle Scholar
  23. Hoad SP, Leakey RRB (1994) Effects of light quality on gas exchange and dry matter partitioning in Eucalyptus grandis W. Hill ex Maiden. Forest Ecol Manag 70:265–273CrossRefGoogle Scholar
  24. Hoad SP, Leakey RRB (1996) Effects of pre-severance light quality on the vegetative propagation of Eucalyptus grandis. Cutting morphology, gas exchange and carbohydrate status during rooting. Trees 10:317–324Google Scholar
  25. Leakey RRB (2004) Physiology of vegetative propagation. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest sciences. Academic Press, London, pp 1655–1668CrossRefGoogle Scholar
  26. Leakey RRB (2014) Plant cloning: macropropagation. In: Van Alfen N (ed) Encyclopedia of agriculture and food systems, vol 4. Elsevier, San Diego, pp 349–359CrossRefGoogle Scholar
  27. Menéndez-Yuffá A, Barry-Etienne D, Bertrand B, Georget F, Etienne H (2010) A comparative analysis of the development and quality of nursery plants derived from somatic embryogenesis and from seedlings for large-scale propagation of coffee (Coffea arabica L.). Plant Cell Tissue Organ Cult 102:297–307CrossRefGoogle Scholar
  28. Mesén F, Jiménez LD (2016) Producción de clones de café por miniestacas. CATIE, Turrialba, Costa Rica. Serie Técnica, Manual Técnico No. 130, 27 pGoogle Scholar
  29. Mesén F, Newton AC, Leakey RRB (1997a) The effects of propagation environment and foliar areas on the rooting physiology of Cordia alliodora (Ruiz & Pavon) Oken cuttings. Trees 11:401–411Google Scholar
  30. Mesén F, Newton AC, Leakey RRB (1997b) Vegetative propagation of Cordia alliodora (Ruiz & Pavon) Oken: the effect of IBA concentration, propagation medium and cutting origin. Forest Ecol Manage 92:45–54CrossRefGoogle Scholar
  31. Mesén F, Leakey RRB, Newton AC (2001) The influence of stockplant environment on morphology, physiology and rooting of leafy stem cuttings of Albizia guachapele. New Forests 22:213–227CrossRefGoogle Scholar
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  33. PROMECAFE (2003) Avances en mejoramiento genético. Antecedentes. In: Boletín PROMECAFE Nº 99 October 2003–January 2004. IICA/ PROMECAFE. 20 pGoogle Scholar
  34. Sharp WR, Caldas LS, Crocomo OJ, Monaco LC, Carvalho A (1973) Production of Coffea arabica callus of three ploidy levels and subsequent morphogenesis. Phyton 31:67–74Google Scholar
  35. Sondahl MR, Sharp WR (1977) High frequency induction of somatic embryos in cultured leaf explants of Coffee arabica L. Z Plazenphysiol 81:395–408Google Scholar
  36. Srinivasan CS, Vishveshvara S (1978) Heterosis and stability for yield in Arabica coffee. Indian J Genet Plants Breed 38:416–420Google Scholar
  37. Staritsky G (1970) Embryoid formation in callus tissues of coffee. Acta Bot 19:509–514Google Scholar
  38. Van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from coffee leaves. Plant Cell Tissue Organ Cult 44:7–17CrossRefGoogle Scholar
  39. Yasuda T, Fujii Y, Yamaguchi T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol 26:595–597CrossRefGoogle Scholar
  40. Zamarripa A, Ducos JP, Bollon H, Dufour M, Petiard V (1991) Production d’embryons somatiques de cafeier en millieu liquide: effets densite d’inoculation et renouvellement du millieu. Café Cacao The 35:233–244Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. Elena Aguilar
    • 1
  • J. Luis Ortiz
    • 1
  • Francisco Mesén
    • 2
  • L. Diego Jiménez
    • 2
  • Fernando Altmann
    • 3
  1. 1.Biotechnology LaboratoryTropical Agricultural Research and Higher Education Center (CATIE)CartagoCosta Rica
  2. 2.Forest Seed Bank, Tropical Agricultural Research and Higher Education Center (CATIE)CartagoCosta Rica
  3. 3.Gaia Artisan Coffee S.A.Paraíso, CartagoCosta Rica

Personalised recommendations