Advertisement

Protocol for Somatic Embryogenesis in Passiflora cincinnata Mast. (Passifloraceae)

  • Lorena Melo Vieira
  • Priscila Oliveira Silva
  • Amanda Mendes Fernandes
  • Diego Ismael Rocha
  • Wagner Campos Otoni
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

The process of somatic embryogenesis has become an essential asset, as it enables plant regeneration and large-scale propagation. Our research team has pioneered a reproducible protocol for somatic embryogenesis using mature zygotic embryo of P. cincinnata. Here, we describe in details the protocol for P. cincinnata, in which the explants were exposed to medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Due to the efficacy and reproducibility of this regeneration protocol, new perspectives arise as the protocol can be extended to other Passifloraceae species that arouse agronomic, ornamental and commercial interest. Moreover, this is an alternative for genetic transformation protocols, based up to now on the organogenic system.

Notes

Acknowledgements

The Brazilian sponsoring agencies Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil; Grant no. CBB - APQ-01131-15) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil: Grant no. 459.529/2014-5) are acknowledged for the financial support. P.O.S. was recipient of a PhD scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil). A.M.F. is currently recipient of a MSc scholarship from FAPEMIG, and L.M.V. a post-doctoral scholarship from CAPES/PNPD). Authors are also grateful to Dr. Daniela L. Paim-Pinto for generously making available Figs. 21.4B and 21.4C, and to Mr. Herculano José de Freitas, for kindly making available the photos in Fig. 21.1. Our gratitude to Caio G. Otoni for the English revision.

References

  1. Anthony P, Otoni WC, Power JB, Lowe KC, Davey MR (1999) Protoplast isolation, culture, and plant regeneration from Passiflora. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Totowa, pp 169–181CrossRefGoogle Scholar
  2. Chitwood DH, Otoni WC (2017) Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade. GigaScience 6:1–13PubMedPubMedCentralGoogle Scholar
  3. Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94:1–23CrossRefPubMedGoogle Scholar
  4. Dias LLC, Santa-Catarina C, Ribeiro DM, Barros RS, Floh EIS, Otoni WC (2009) Ethylene and polyamine production patterns during in vitro shoot organogenesis of two passion fruit species as affected by polyamines and their inhibitor. Plant Cell Tiss Organ Cult 99:199–208CrossRefGoogle Scholar
  5. Dias LLC, Ribeiro DM, Santa-Catarina C, Barros RS, Floh EIS, Otoni WC (2010) Ethylene and polyamine interactions in morphogenesis of Passiflora cincinnata: effects of ethylene biosynthesis and action modulators, as well as ethylene scavengers. Plant Growth Reg 62:9–19CrossRefGoogle Scholar
  6. Dornelas MC, Vieira MLC (1993) Plant regeneration from protoplast cultures of Passiflora edulis var. flavicarpa Deg., P. amethystina Mikan and P. cincinnata Mast. Plant Cell Rep 13:103–106CrossRefPubMedGoogle Scholar
  7. Dornelas MC, Tavares FCA, Oliveira JC, Vieira MLC (1995) Plant regeneration from protoplast fusion in Passiflora spp. Plant Cell Rep 15:106–110CrossRefPubMedGoogle Scholar
  8. Faria RB, Carvalho IF, Rossi AAB, Matos EM, Rocha DI, Paim Pinto DL, Otoni WC, Silva ML (2018) High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. Vitro Cell Dev Biol-Plant 54:166–174Google Scholar
  9. Ferreira DAT, Sattler MC, Carvalho CR, Clarindo WR (2015) Embryogenic potential of immature zygotic embryos of Passiflora: a new advance for in vitro propagation without plant growth regulators. Plant Cell Tiss Organ Cult 122:629–638CrossRefGoogle Scholar
  10. Lombardi SP, Passos IRDS, Nogueira MCS, Appezzato-da-Glória B (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata mast. Braz Arch Biol Technol 50:239–247CrossRefGoogle Scholar
  11. Meletti LMM, Soares-Scott MD, Bernacci LC, Passos IR (2005) Passion fruit breeding: past and future. In: Faleiro FG, Junqueira NTV, Braga MF (eds) Passion fruit: germplasm and breeding. Embrapa Cerrados, Planaltina, DF, Brazil, pp 55–78 (in Portuguese)Google Scholar
  12. Nakayama F (1966) In vitro tissue culture of Passiflora caerulea. Rev Fac Agric Nac La Plata 42:63–74 (in Spanish)Google Scholar
  13. Otoni WC (1995) Somatic embryogenesis, somatic hybridization, and genetic transformation in Passiflora species. Ph.D. Dissertation, Universidade Federal de Viçosa, Viçosa, MG, Brazil (in Portuguese)Google Scholar
  14. Otoni WC, Blackhall NW, d’Utra Vaz FB, Casali VWD, Power JB, Davey MR (1995) Somatic hybridization of the Passiflora species, P. edulis f. flavicarpa Degener and P. incarnata L. J Exp Bot 46:777–785CrossRefGoogle Scholar
  15. Otoni WC, Silva ML, Lima ABP, Paim Pinto DL, Lani ERG, Reis LB (2007) Transformação genética de maracujazeiros. In: Torres AC, Dusi AN, Santos MDM (eds) Transformação genética de plantas via Agrobacterium: Teoria e prática, 1ª ed, vol 1. Embrapa Hortaliças, Brasília, pp 121–137 (In Portuguese)Google Scholar
  16. Otoni WC, Paim-Pinto DL, Rocha DI, Vieira LM, Dias LLC, Silva ML, Silva CV, Lani ERG, Silva LCD, Tanaka FAO (2013) Organogenesis and Embryogenesis in Passionfruit (Passiflora sp.). In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 1–17Google Scholar
  17. Ozarowski M, Thiem B (2013) Progress in micropropagation of Passiflora spp. to produce medicinal plants: a mini-review. Braz J Pharmacogn 23:937–947CrossRefGoogle Scholar
  18. Pacheco G, Simão MJ, Vianna MG, Garcia RO, Vieira MLC, Mansur E (2016) In vitro conservation of Passiflora—a review. Sci Hortic 211:305–311CrossRefGoogle Scholar
  19. Paim Pinto DL, Barros BA, Viccini LF, Campos JMS, Silva ML, Otoni WC (2010) Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry. Plant Cell Tiss Organ Cult 103:71–79CrossRefGoogle Scholar
  20. Paim Pinto DL, Almeida AMR, Rêgo MM, Silva ML, Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Organ Cult 107:521–530CrossRefGoogle Scholar
  21. Rêgo MM, Rêgo ER, Bruckner CH, Finger FL, Otoni WC (2011) In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tiss Organ Cult 107:451–459CrossRefGoogle Scholar
  22. Ribeiro LM, Nery LA, Vieira LM, Mercadante-Simões MO (2015) Histological study of micrografting in passionfruit. Plant Cell Tiss Organ Cult 123:173–181CrossRefGoogle Scholar
  23. Rocha DI, Dornelas MC (2013) Molecular overview on plant somatic embryogenesis. CAB Rev 8:1–17CrossRefGoogle Scholar
  24. Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni WC (2012) Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences. Protoplasma 249:747–758CrossRefPubMedGoogle Scholar
  25. Rocha DI, Monte-Bello CC, Dornelas MC (2015) Alternative induction of de novo shoot organogenesis or somatic embryogenesis from in vitro cultures of mature zygotic embryos of passion fruit (Passiflora edulis Sims) is modulated by the ratio between auxin and cytokinin in the medium. Plant Cell Tiss Organ Cult 120:1087–1098CrossRefGoogle Scholar
  26. Rocha DI, Paim Pinto DL, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC (2016) Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. Protoplasma 253:595–609CrossRefPubMedGoogle Scholar
  27. Rocha DI, Vieira LM, Koehler AD, Otoni WC (2018) Cellular and morpho-histological foundations of in vitro plant regeneration. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, 4th edn. Springer, Heidelberg (In press)Google Scholar
  28. Rosa YBCJ, Bello CCM, Dornelas MC (2015) Species-dependent divergent responses to in vitro somatic embryo induction in Passiflora spp. Plant Cell Tiss Organ Cult 120:69–77CrossRefGoogle Scholar
  29. Silva TCR, Carvalho CR (2014) Vertical heterogeneity of DNA ploidy level assessed by flow cytometry in calli of Passiflora cincinnata. In Vitro Cell Dev Biol Plant 50:158–165CrossRefGoogle Scholar
  30. Silva ML, Paim Pinto DL, Guerra MP, Floh EIS, Bruckner CH, Otoni WC (2009) A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos. Plant Cell Tiss Organ Cult 99:47–54CrossRefGoogle Scholar
  31. Silva CV, Oliveira LS, Loriato VAP, Silva LC, Campos JMS, Viccini LF, Oliveira EJ, Otoni WC (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata Masters. Plant Cell Tiss Organ Cult 107:621, 407–416Google Scholar
  32. Silva ML, Paim Pinto DL, Guerra MP, Lani ERG, Carvalho IF, Rossi AAB, Otoni WC (2015) Synthetic seeds of a wild passionfruit species with ornamental potential. Ornam Hortic 21:331–338 (In Portuguese)CrossRefGoogle Scholar
  33. Simpson MG (2010) Plant systematics, 2nd edn. Academic Press, San Francisco, pp 322–323CrossRefGoogle Scholar
  34. Smertenko A, Bozhkov PV (2014) Somatic embryogenesis: life and death processes during apical-basal patterning. J Exp Bot 65:1343–1460CrossRefPubMedGoogle Scholar
  35. Tiwari S, Singh S, Tripathi S, Kumar S (2016) A pharmacological review: Passiflora species. Int J Pharmacogn 3:10–18Google Scholar
  36. Trevisan F, Mendes BMJ, Maciel SC, Vieira MLC, Meleti LMM, Rezende JAM (2006) Resistance to Passion fruit woodiness virus in transgenic passionflower expressing the virus coat protein gene. Plant Dis 90:1026–1030CrossRefGoogle Scholar
  37. Ulmer T, MacDougal JM (2004) Passiflora: passionflowers of the world. Timber Press, Portland Oregon, p 430Google Scholar
  38. Vieira MLC, Carneiro MS (2004) Passiflora spp., passionfruit. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, pp 435–453Google Scholar
  39. Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33CrossRefPubMedGoogle Scholar
  40. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57CrossRefGoogle Scholar
  41. Yockteng R, d’Eeckenbrugge GC, Souza-Chies TT (2011) Passiflora. Wild crop relatives: genomic and breeding resources, tropical and subtropical fruits. Springer, Heidelberg, pp 129–171CrossRefGoogle Scholar
  42. Zerbini FM, Otoni WC, Vieira MLC (2008) Passionfruit. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants, Tropical and subtropical fruit and nuts, 1st edn, vol 5. Wiley, Hoboken, pp 213–234Google Scholar
  43. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lorena Melo Vieira
    • 1
  • Priscila Oliveira Silva
    • 1
  • Amanda Mendes Fernandes
    • 1
  • Diego Ismael Rocha
    • 2
  • Wagner Campos Otoni
    • 1
  1. 1.Departamento de Biologia Vegetal, Laboratório de Cultura de Tecidos—LCT, Instituto de Biotecnologia Aplicada à Agropecuária-BIOAGROUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Instituto de BiociênciasUniversidade Federal de GoiásJataíBrazil

Personalised recommendations