Intellectual Capital as a Driver to Science, Technology and Innovation Strategies

  • Everton Ricardo do NascimentoEmail author
  • Paulo Maurício Selig
  • Roberto Carlos dos Santos Pacheco


One of the most important challenges faced by governments is to develop tangible public plans in coproduction with society. This is even a more complex task in Science, Technology and Innovation (ST&I) public plans, due to the intangibility and the lack of value perception by society. In this chapter, we present the development and the application of a framework to coproduction of ST&I public plans. The methodology initiates with participants from all innovation sectors. First, they discuss and decide about the status of their regional ST&I system (regarding institutionalization, regional development, market, infrastructure, education, science, technology and innovation). Then, the groups elaborate proposals to foster their regional ST&I systems in terms of Intellectual Capital (human, structural, relational and social capital), governance and dynamic inducers. In the last phase, academic, governmental, industrial and social organizational institutional representatives analyze these demands and offer goals and actions, later organized as a ST&I strategic map. We have applied the framework in Santa Catarina state (Brazil). More than 1000 ST&I players from six regions developed 450 proposals analyzed by 27 academic, governmental, industrial and social organizational institutional representatives. The result was a state strategic map with 34 goals and 65 actions to foster ST&I regional system.


Coproduction Perception analysis Science Technology and innovation Framework Intellectual capital 


  1. Allison, R. I., & Uhl, K. P. (1964). Influence of beer brand identification on taste perception. Journal of Marketing Research, 1, 36–39.CrossRefGoogle Scholar
  2. Anderson, P. (1999). Perspective: Complexity theory and organization science. Organization Science, 10(3), 216–232.CrossRefGoogle Scholar
  3. Bardin, L. (2009). Análise de conteúdo (Edição revista e actualizada) (p. 70). Lisboa: Edições.Google Scholar
  4. Bauer, M. W., & Gaskell, G. (Eds.). (2000). Qualitative researching with text, image and sound: A practical handbook for social research. London: Sage.Google Scholar
  5. Bontis, N. (1998). Intellectual capital: An exploratory study that develops measures and models. Management Decision, 36(2), 63–76.CrossRefGoogle Scholar
  6. Brudney, J. L. (1984). Local coproduction of services and the analysis of municipal productivity. Urban Affairs Quarterly, 19(4), 465–484.CrossRefGoogle Scholar
  7. Bueno, E., Arrien, M., & Rodríguez, O. (2003). Modelo Intellectus: Medición y gestión del capital intelectual. Documentos Intellectus, 5, 1–175.Google Scholar
  8. Csillag, J. M. (1995). Análise do valor: Metodologia do valor: Engenharia do valor, gerenciamento do valor, redução de custos, racionalização administrativa. São Paulo: Atlas.Google Scholar
  9. De Koeijer, T. J., Wossink, G. A. A., Van Ittersum, M. K., Struik, P. C., & Renkema, J. A. (1999). A conceptual model for analysing input–output coefficients in arable farming systems: From diagnosis towards design. Agricultural Systems, 61(1), 33–44.CrossRefGoogle Scholar
  10. Ecker, D. W., & Baker, T. L. (1984). Multiple perception analysis: A convergence model for evaluating arts education. Studies in Art Education, 25(4), 245–250.CrossRefGoogle Scholar
  11. Edvinsson, L. (1998). Managing intellectual capital at Skandia. In Profiting from intellectual capital: Extracting value from innovation (p. 279). New York: Wiley.Google Scholar
  12. Ferenhof, H. A., Durst, S., Bialecki, M. Z., & Selig, P. M. (2015). Intellectual capital dimensions: State of the art in 2014. Journal of Intellectual Capital, 16(1), 58–100.CrossRefGoogle Scholar
  13. Frodeman, R. (2013). Sustainable knowledge: A theory of interdisciplinarity. New York: Springer.Google Scholar
  14. Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M., Simoes, A., & Yildirim, M. A. (2014). The atlas of economic complexity: Mapping paths to prosperity. Cambridge: MIT Press.Google Scholar
  15. Helliwell, J. F., & Putnam, R. D. (1995). Economic growth and social capital in Italy. Eastern Economic Journal, 21(3), 295–307.Google Scholar
  16. Hollanders, H., Es-Sadki, N., & Kanerva, M. (2016). European innovation scoreboard 2016. European Commission.Google Scholar
  17. Hollies, N. R., Custer, A. G., Morin, C. J., & Howard, M. E. (1979). A human perception analysis approach to clothing comfort. Textile Research Journal, 49(10), 557–564.CrossRefGoogle Scholar
  18. Innes, J. E., & Booher, D. E. (2000). Indicators for sustainable communities: A strategy building on complexity theory and distributed intelligence. Planning Theory & Practice, 1(2), 173–186.CrossRefGoogle Scholar
  19. Instituto Brasileiro de Geografia e Estatística. (2015). Estimativas da população residente no Brasil e unidades da federação com data de referência em 1° de julho de 2015.Google Scholar
  20. Kable, J. C. (1983). Decision perception analysis—Measuring a manager’s preference for managing. Journal of Management Development, 2(3), 3–18.CrossRefGoogle Scholar
  21. Lange, W., Pirzer, C., Dünow, L., & Schelchen, A. (2016). Risk perception for participatory ecosystem-based adaptation to climate change in the Mata Atlântica of Rio de Janeiro State, Brazil. In F. G. Renaud, K. Sudmeier-Rieux, M. Estrella, & U. Nehren (Eds.), Ecosystem-based disaster risk reduction and adaptation in practice (pp. 483–506). Cham: Springer.CrossRefGoogle Scholar
  22. Levine, C. H., & Fisher, G. (1984). Citizenship and service delivery: The promise of coproduction. Public Administration Review, 44, 178–189.CrossRefGoogle Scholar
  23. Leydesdorff, L. (2000). The triple helix: An evolutionary model of innovations. Research Policy, 29(2), 243–255.CrossRefGoogle Scholar
  24. Marques, M. A. J., Alves, V. C., dos Santos Pacheco, R. C., & Orsatto, S. D. (2017). Análise de percepção de atores de Ciência, Tecnologia e Inovação em sistemas regionais e ambientes de inovação. Navus-Revista de Gestão e Tecnologia, 7(3), 86–94.CrossRefGoogle Scholar
  25. Marschall, M. J. (2004). Citizen participation and the neighborhood context: A new look at the coproduction of local public goods. Political Research Quarterly, 57(2), 231–244.CrossRefGoogle Scholar
  26. Mauser, W., Klepper, G., Rice, M., Schmalzbauer, B. S., Hackmann, H., Leemans, R., & Moore, H. (2013). Transdisciplinary global change research: The co-creation of knowledge for sustainability. Current Opinion in Environmental Sustainability, 5(3–4), 420–431.CrossRefGoogle Scholar
  27. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.Google Scholar
  28. Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. Knowledge and Social Capital, 23, 119–157.Google Scholar
  29. OECD Publishing. (2014). OECD science, technology and industry outlook 2014. Paris: OECD Publishing.Google Scholar
  30. Ostrom, E. (1996). Crossing the great divide: Coproduction, synergy, and development. World Development, 24(6), 1073–1087.CrossRefGoogle Scholar
  31. Pacheco, R. C. S., Selig, P. M., & Zucco, C. (Eds.). (2016). V Conferência Estadual de Ciência, Tecnologia e Inovação de Santa Catarina: Metodologia e resultados para o plano estadual de CTI. Instituto Stela: Florianópolis.Google Scholar
  32. Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.CrossRefGoogle Scholar
  33. Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting tool: Issues and analysis. International Journal of Forecasting, 15(4), 353–375.CrossRefGoogle Scholar
  34. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.CrossRefGoogle Scholar
  35. Santos, P. M. D., Schlosser, J. F., Romano, L. N., Rozin, D., Turatti, J. D. C., & Witter, M. (2008). Requirement priorities for the design of tractor workplaces related to ergonomics and safety. Pesquisa Agropecuária Brasileira, 43(7), 869–877.CrossRefGoogle Scholar
  36. Schuttenberg, H., & Guth, H. (2015). Seeking our shared wisdom: A framework for understanding knowledge coproduction and coproductive capacities. Ecology and Society, 20(1), 15.CrossRefGoogle Scholar
  37. Schwab, K., & Sala-i-Martin, X. (2016). The global competitiveness report 2015–2016, Geneva. The World Economic Forum, 403, 1–92.Google Scholar
  38. Selig, P. M. (1993). Gerência e avaliação do valor agregado empresarial.Google Scholar
  39. Sharp, E. B. (1980). Toward a new understanding of urban services and citizen participation: The coproduction concept. Midwest Review of Public Administration, 14(2), 105–118.CrossRefGoogle Scholar
  40. Sveiby, K. E. (1998). Intellectual capital: Thinking ahead. Australian CPA, 68, 18–23.Google Scholar
  41. Takeuchi, H., & Nonaka, I. (2009). Gestão do conhecimento. Porto Alegre: Bookman Editora.Google Scholar
  42. Wiig, K. M. (1997). Integrating intellectual capital and knowledge management. Long Range Planning, 30(3), 399–405.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Everton Ricardo do Nascimento
    • 1
    Email author
  • Paulo Maurício Selig
    • 1
  • Roberto Carlos dos Santos Pacheco
    • 1
  1. 1.Department of Engineering and Knowledge ManagementFederal University of Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations