Advertisement

Deaf Students Learning Mathematics: Interactive Patterns, Participation, and Inclusion

  • Inês Borges
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

The inclusion of students who need specialised educational and social support has led to an increasing diversity in Portuguese mainstream schools. National and international educational policy documents highlight the need to promote an inclusive education that entails new challenges to the teachers. However, barriers are still part of the school path of those who need support, e.g. deaf students. Taking an interpretative approach, we developed two intrinsic case studies. We focused on the adaptations that allowed two deaf 12th grade students to learn mathematics with their classmates. The participants were these two deaf students, their classmates, and their mathematics and special education teachers. Data collecting instruments were observation, interviews, informal conversations, students’ protocols, and documents. The data was analysed through a narrative content analysis from which inductive categories emerged. Results focus on five interactive patterns observed in classes. Several examples illuminate how they facilitated the mathematics communication and learning processes of these two deaf students as well as their inclusion inside and outside school.

Keywords

Mathematics education Deaf students Inclusion Social interactions Interactive patterns 

Notes

Acknowledgment

Our gratitude goes to the school, teachers, students, and families who contributed to make this work come true, and to Sofia Coelho who edited this paper.

References

  1. Abrantes, P., Serrazina, L., & Oliveira, I. (1999). A matemática na educação básica. Lisbon: Ministério da Educação.Google Scholar
  2. Abreu, G. de, Bishop, A., & Presmeg, N. C. (2002). Transitions between contexts of mathematical practices. Dordrecht: Kluwer.CrossRefGoogle Scholar
  3. Ainscow, M., & César, M. (2006). Inclusive education ten years after Salamanca: Setting the agenda. European Journal of Psychology of Education, 21(3), 231–238.CrossRefGoogle Scholar
  4. Allan, J., & Slee, R. (2008). Doing inclusive education research. Rotterdam: Sense.Google Scholar
  5. Alrø, H., Ravn, O., & Valero, P. (Eds.). (2010). Critical mathematics education: Past, present and future. Festschrift for Ole Skovsmose. Rotterdam: Sense.Google Scholar
  6. Bakhtin, M. (1929/1981). The dialogical imagination. Austin: University of Texas Press.Google Scholar
  7. Borges, I. (2009). Alunos surdos e a matemática: Dois estudos de caso, no 12.° ano de escolaridade do ensino regular. Lisbon: Associação de Professores de Matemática.Google Scholar
  8. Borges, I. (2017). Inclusão, transições e matemática: Dois estudos de caso sobre os percursos académicos de dois estudantes surdos. PhD thesis, Universidade Nova de Lisboa.Google Scholar
  9. Borges, I., & César, M. (2012). Eu leio, tu ouves, nós aprendemos: Experiências de aprendizagem matemática e vivências de inclusão de dois estudantes surdos, no ensino regular. Interacções, 8(20), 141–180.Google Scholar
  10. Borges, I., César, M., & Matos, J. M. (2012). Two deaf students attending a mainstream mathematics class: Challenging the interaction and collaboration between home and school. In J. Díez-Palomar & C. Kanes (Eds.), Family and community in and out of the classroom: Ways to improve mathematics’ achievement (pp. 77–88). Bellaterra: Universitat Autònoma de Barcelona.Google Scholar
  11. César, M. (2009). Listening to different voices: Collaborative work in multicultural maths classes. In M. César & K. Kumpulainen (Eds.), Social interactions in multicultural settings (pp. 203–233). Rotterdam: Sense.Google Scholar
  12. César, M. (2012). Educação especial: Pequenos passos, alguns retrocessos e muito caminho para andar. Interacções, 8(21), 68–94.Google Scholar
  13. César, M. (2013). Collaborative work, dialogical self and inter-/intra-empowerment mechanisms: (Re)constructing life trajectories of participation. In M. B. Ligorio & M. César (Eds.), Interplays between dialogical learning and dialogical self (pp. 151–192). Charlotte: IAP.Google Scholar
  14. César, M. (2014). Inter- and intra-empowerment mechanisms: Contributions to mathematical thinking and achievement. In T. Zittoun & A. Iannaccone (Eds.), Activities of thinking in social spaces (pp. 167–186). Hauppauge: Nova Science.Google Scholar
  15. César, M. (2017). Travail collaboratif et processus d’enseignement et d’apprentissage des mathématiques: L’importance des mécanismes d’inter- et intra-empowerment. In M. Giglio & F. Arcidiacono (Eds.), Les interactions sociales en classe: Réflexions et perspectives (pp. 35–53). Bern: Peter Lang.Google Scholar
  16. César, M., & Santos, N. (2006). From exclusion to inclusion: Collaborative work contributions to more inclusive learning settings. European Journal of Psychology of Education, 21(3), 333–346.CrossRefGoogle Scholar
  17. César, M., Machado, R., & Ventura, C. (2014). Praticar a inclusão e não apenas falar de inclusão. Interacções, 10(33), 18–72.Google Scholar
  18. Clandinin, D. J., & Connelly, F. M. (1998). Personal experience methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Collecting and interpreting qualitative materials (pp. 150–178). Thousand Oaks: Sage.Google Scholar
  19. Clapton, J. (2009). A transformatory ethic of inclusion: Rupturing concepts of disability and inclusion. Rotterdam: Sense.Google Scholar
  20. Curado, A. P., & Oliveira, V. (2010). Estudantes com necessidades educativas especiais na universidade de Lisboa. Lisbon: Universidade de Lisboa.Google Scholar
  21. de Almeida, A. N. (2009). Os estudantes à entrada da universidade de Lisboa: 2008/09. Lisbon: OPEST – Universidade de Lisboa.Google Scholar
  22. Denzin, N. (2002). The interpretative process. In A. Huberman & M. Miles (Eds.), The qualitative researchers companion (pp. 349–366). Thousand Oaks: Sage.Google Scholar
  23. Healy, L., Ramos, E., Fernandes, S., & Peixoto, J. (2016). Mathematics in the hands of deaf learners and blind learners: Visual-gestural-somatic means of doing and expressing mathematics. In R. Barwell, P. Clarkson, A. Halai, M. Kazima, J. Moschkovich, et al. (Eds.), Mathematics education and language diversity: The 21st ICMI study (pp. 47–66). New York: Springer.Google Scholar
  24. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Melro, J. (2014). Do gesto à voz: Um estudo de caso sobre a inclusão de estudantes surdos do ensino secundário recorrente noturno. PhD thesis, Universidade de Lisboa.Google Scholar
  26. Meyer, M., Prediger, S., César, M., & Norén, E. (2016). Making use of multiple (non-shared) first languages: State of and need for research and development in the European language context. In R. Barwell, P. Clarkson, A. Halai, M. Kazima, J. Moschkovich, et al. (Eds.), Mathematics education and language diversity: The 21st ICMI study (pp. 47–66). New York: Springer.CrossRefGoogle Scholar
  27. National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. , Reston: NCTM.Google Scholar
  28. Nieto, S. (2010). Language, culture, and teaching: Critical perspectives. New York: Routledge.Google Scholar
  29. Perret-Clermont, A.-N. (2004). Thinking spaces of the young. In A.-N. Perret-Clermont, C. Pontecorvo, L. Resnick, T. Zittoun, & B. Burge (Eds.), Joining society: Social interaction and learning in adolescence and youth (pp. 3–10). Cambridge: Cambridge University Press.Google Scholar
  30. Remedios, L., & Clarke, D. (2009). Cultural origins of patterns of participation in multicultural classrooms. In M. César & K. Kumpulainen (Eds.), Social interactions in multicultural settings (pp. 297–327). Rotterdam: Sense.Google Scholar
  31. Rose, R. (2002). The curriculum: A vehicle for inclusion or a lever for exclusion? In C. Tilstone, L. Florian, & R. Rose (Eds.), Promoting inclusive practice (pp. 27–38). London: Routledge Falmer.Google Scholar
  32. Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam: Sense.CrossRefGoogle Scholar
  33. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Stake, R. E. (1995). The art of case study research. Thousand Oaks: Sage.Google Scholar
  35. Timmons, V., & Walsh, P. N. (2010). A long walk to school: Global perspectives on inclusive education. Rotterdam: Sense.Google Scholar
  36. Underwood, K. (2008). The construction of disability in our schools: Teachers’ and parents’ perspectives on the experience of labelled students. Rotterdam: Sense.Google Scholar
  37. UNESCO. (1994). The Salamanca framework for action. Salamanca: UNESCO.Google Scholar
  38. Vygotsky, L. S. (1934/1962). Thought and language. Cambridge, MA: MIT Press.Google Scholar
  39. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological functions. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Inês Borges
    • 1
  1. 1.Faculty of Science and TechnologyUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations