Advertisement

Management of Autoimmune and Inflammatory Disorders in the Setting of Infection or Immunodeficiency

  • W. Winn Chatham
Chapter

Abstract

Host-microbiome symbiosis is contingent upon intact immune surveillance and competence. Compromised immunity with development of clinical infection may occur as a consequence of immunosuppressive therapy prescribed for treatment of inflammatory or autoimmune disease. Alternatively, autoimmune disorders not uncommonly develop in the context of underlying immune deficiency. In either setting, clinicians may need to develop strategies to suppress autoimmune-mediated inflammation in the setting of intercurrent infection. The optimal strategy is best informed by what host defenses are required to effect resolution of the infection, the current status of these defenses in a given patient, and recognition of how chosen therapies for managing autoimmunity and associated inflammation may (or may not) impact the ability of the needed defenses to eradicate specific pathogens.

Keywords

Autoimmune diseases Immunosuppressive therapy Infection Immunodeficiency 

Abbreviations

ADA

Adenosine deaminase deficiency

AICDA

Activation-induced cytidine deaminase

CVID

Common variable immunodeficiency

DMARD

Disease-modifying antirheumatic drug

GCA

Giant cell arteritis

GPA

Granulomatosis with polyangiitis

IL

Interleukin

IL-6R,IL-17R

Interleukin 6 (17) receptor

IVIG

Intravenous immunoglobulin

MBL

Mannose-binding lectin

MMP

Matrix metalloproteinase

MPA

Microscopic polyangiitis

MTX

Methotrexate

NSAID

Nonsteroidal anti-inflammatory drug

PAN

Polyarteritis nodosa

PID

Primary immunodeficiency

RA

Rheumatoid arthritis

sIgA

Selective IgA deficiency

SLE

Systemic lupus erythematosus

SNSA

Seronegative spondyloarthritis

TACI

Transmembrane activator, calcium-modulator, and cyclophilin ligand interactor

TLR

Toll-like receptor

UNG

Uracil nucleoside glycosylase

WAS

Wiskott-Aldrich syndrome

XLA

X-linked agammaglobulinemia

References

  1. 1.
    Doran MF, Crowson CS, Pond GR, O’Fallon WM, Gabriel SE. Predictors of infection in rheumatoid arthritis. Arthritis Rheum. 2002;46:2294–300.CrossRefGoogle Scholar
  2. 2.
    Curtis JR, Yang S, Patkar NM, Chen L, Singh JA, Cannon GW, et al. Risk of hospitalized bacterial infections associated with biologic treatment among US veterans with rheumatoid arthritis. Arthritis Care Res. 2014;66(7):990.CrossRefGoogle Scholar
  3. 3.
    Aaltonen KJ, Joensuu JT, Virkki L, Sokka T, Aronen P, Relas H, et al. Rates of serious infections and malignancies among patients with rheumatoid arthritis receiving either tumor necrosis factor inhibitor or rituximab therapy. J Rheumatol. 2015;42:372–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295:2275–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Goodman SM. Rheumatoid arthritis: perioperative management of biologics and DMARDs. Semin Arthritis Rheum. 2015;44:627–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Chan ES, Cronstein BN. Methotrexate – how does it really work? Nat Rev Rheumatol. 2010;6:175–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Moreland LW, Bucy RP, Weinblatt ME, Mohler KM, Spencer-Green GT, Chatham WW. Immune function in patients with rheumatoid arthritis treated with etanercept. Clin Immunol. 2002;103:13–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Xie X, Li F, Chen JW, Wang J. Risk of tuberculosis infection in anti-TNF-alpha biological therapy: from bench to bedside. J Microbiol Immunol Infect. 2014;47:268–74.CrossRefPubMedGoogle Scholar
  9. 9.
    Dorhoi A, Kaufmann SH. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol. 2014;26:203–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Baddley JW, Winthrop KL, Chen L, Liu L, Grijalva CG, Delzell E, et al. Non-viral opportunistic infections in new users of tumour necrosis factor inhibitor therapy: results of the SAfety Assessment of Biologic ThERapy (SABER) study. Ann Rheum Dis. 2014;73:1942–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Wasson NJ, Varley CD, Schwab P, Fu R, Winthrop KL. Serious skin & soft tissue infections in rheumatoid arthritis patients taking anti-tumor necrosis factor alpha drugs: a nested case-control study. BMC Infect Dis. 2013;13:533.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83:113–8.PubMedGoogle Scholar
  13. 13.
    Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Strangfeld A, Richter A, Siegmund B, Herzer P, Rockwitz K, Demary W, et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann Rheum Dis. 2017;76:504–10.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Strand V, Ahadieh S, French J, Geier J, Krishnaswami S, Menon S, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17:362.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Desai RJ, Thaler KJ, Mahlknecht P, Gartlehner G, McDonagh MS, Mesgarpour B, et al. Comparative risk of harm associated with the use of targeted immunomodulators: a systematic review. Arthritis Care Res. 2016;68:1078–88.CrossRefGoogle Scholar
  17. 17.
    Yun H, Xie F, Delzell E, Levitan EB, Chen L, Lewis JD, et al. Comparative risk of hospitalized infection associated with biologic agents in rheumatoid arthritis patients enrolled in medicare. Arthritis Rheumatol. 2016;68:56–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Schiff M, Weinblatt ME, Valente R, van der Heijde D, Citera G, Elegbe A, et al. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: two-year efficacy and safety findings from AMPLE trial. Ann Rheum Dis. 2014;73:86–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Silva-Fernandez L, De Cock D, Lunt M, Low AS, Watson KD, Group B-RC, et al. Serious infection risk after 1 year between patients with rheumatoid arthritis treated with rituximab or with a second TNFi after initial TNFi failure: results from the British Society for Rheumatology biologics register for rheumatoid arthritis. Rheumatology. 2017.  https://doi.org/10.1093/rheumatology/kex304.
  20. 20.
    van Vollenhoven RF, Emery P, Bingham CO 3rd, Keystone EC, Fleischmann RM, Furst DE, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72:1496–502.CrossRefPubMedGoogle Scholar
  21. 21.
    Nisihara R, Skare T, Maestri V, Alegretti JS, Campos APB, Messias-Reason I. Mannose-binding lectin (MBL) deficiency and tuberculosis infection in patients with ankylosing spondylitis. Clin Rheumatol. 2017;37(2):555–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Skare TL, Nisihara R, Cieslinski JZ, Zeni JO, Rasera HN, Messias-Reason I, et al. Mannose-binding lectin deficiency in Brazilian patients with spondyloarthritis. Immunol Investig. 2017;46:183–9.CrossRefGoogle Scholar
  23. 23.
    Crowley J, Thaci D, Joly P, Peris K, Papp KA, Goncalves J, et al. Long-term safety and tolerability of apremilast in patients with psoriasis: pooled safety analysis for ≥156 weeks from 2 phase 3, randomized, controlled trials (ESTEEM 1 and 2). J Am Acad Dermatol. 2017;77:310–7e1.CrossRefPubMedGoogle Scholar
  24. 24.
    Kalb RE, Fiorentino DF, Lebwohl MG, Toole J, Poulin Y, Cohen AD, et al. Risk of serious infection with biologic and systemic treatment of psoriasis: results from the psoriasis longitudinal assessment and registry (PSOLAR). JAMA Dermatol. 2015;151:961–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis – results of two phase 3 trials. N Engl J Med. 2014;371:326–38.CrossRefPubMedGoogle Scholar
  26. 26.
    Saunte DM, Mrowietz U, Puig L, Zachariae C. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br J Dermatol. 2017;177:47–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang Y, Chung EK, Zhou B, Lhotta K, Hebert LA, Birmingham DJ, et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun. 2004;7:98–132.CrossRefPubMedGoogle Scholar
  28. 28.
    Monticielo OA, Mucenic T, Xavier RM, Brenol JC, Chies JA. The role of mannose-binding lectin in systemic lupus erythematosus. Clin Rheumatol. 2008;27:413–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Merayo-Chalico J, Gomez-Martin D, Pineirua-Menendez A, Santana-De Anda K, Alcocer-Varela J. Lymphopenia as risk factor for development of severe infections in patients with systemic lupus erythematosus: a case-control study. QJM. 2013;106:451–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Hartman KR. Anti-neutrophil antibodies of the immunoglobulin M class in autoimmune neutropenia. Am J Med Sci. 1994;308:102–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Browne SK. Anticytokine autoantibody-associated immunodeficiency. Annu Rev Immunol. 2014;32:635–57.CrossRefPubMedGoogle Scholar
  32. 32.
    Perazzio SF, Granados A, Salomao R, Silva NP, Carneiro-Sampaio M, Andrade LE. High frequency of immunodeficiency-like states in systemic lupus erythematosus: a cross-sectional study in 300 consecutive patients. Rheumatology. 2016;55:1647–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Engel G, van Vollenhoven RF. Treatment of severe CNS lupus with intravenous immunoglobulin. J Clin Rheumatol. 1999;5:228–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Rodrigues M, Galego O, Costa C, Jesus D, Carvalho P, Santiago M, et al. Central nervous system vasculitis in systemic lupus erythematosus: a case series report in a tertiary referral centre. Lupus. 2017;26:1440–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Deane KD, West SG. Antiphospholipid antibodies as a cause of pulmonary capillaritis and diffuse alveolar hemorrhage: a case series and literature review. Semin Arthritis Rheum. 2005;35:154–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Imran H, Tleyjeh IM, Arndt CA, Baddour LM, Erwin PJ, Tsigrelis C, et al. Fluoroquinolone prophylaxis in patients with neutropenia: a meta-analysis of randomized placebo-controlled trials. Eur J Clin Microbiol Infect Dis. 2008;27:53–63.CrossRefPubMedGoogle Scholar
  37. 37.
    Euler HH, Harten P, Zeuner RA, Schwab UM. Recombinant human granulocyte colony stimulating factor in patients with systemic lupus erythematosus associated neutropenia and refractory infections. J Rheumatol. 1997;24:2153–7.PubMedGoogle Scholar
  38. 38.
    Arnal C, Piette JC, Leone J, Taillan B, Hachulla E, Roudot-Thoraval F, et al. Treatment of severe immune thrombocytopenia associated with systemic lupus erythematosus: 59 cases. J Rheumatol. 2002;29:75–83.PubMedGoogle Scholar
  39. 39.
    Gomard-Mennesson E, Ruivard M, Koenig M, Woods A, Magy N, Ninet J, et al. Treatment of isolated severe immune hemolytic anaemia associated with systemic lupus erythematosus: 26 cases. Lupus. 2006;15:223–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Rogers SJ, Williams CS, Roman GC. Myelopathy in Sjogren’s syndrome: role of nonsteroidal immunosuppressants. Drugs. 2004;64:123–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Gueta I, Shoenfeld Y, Orbach H. Intravenous immune globulins (IVIg) treatment for organizing pneumonia in a selective IgG immune deficiency state. Immunol Res. 2014;60:165–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Kashif M, Arya D, Niazi M, Khaja M. A rare case of necrotizing myopathy and fibrinous and organizing pneumonia with anti-EJ antisynthetase syndrome and SSA antibodies. Am J Case Rep. 2017;18:448–53.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shitenberg D, Fruchter O, Fridel L, Kramer MR. Successful rituximab therapy in steroid-resistant, cryptogenic organizing pneumonia: a case series. Respiration. 2015;90:155–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Volkmann ER, Tashkin DP, Li N, Roth MD, Khanna D, Hoffmann-Vold AM, et al. Mycophenolate mofetil versus placebo for systemic sclerosis-related interstitial lung disease: an analysis of scleroderma lung studies I and II. Arthritis Rheumatol. 2017;69:1451–60.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cantarini L, Rigante D, Vitale A, Napodano S, Sakkas LI, Bogdanos DP, et al. Intravenous immunoglobulins (IVIG) in systemic sclerosis: a challenging yet promising future. Immunol Res. 2015;61:326–37.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang DX, Shu XM, Tian XL, Chen F, Zu N, Ma L, et al. Intravenous immunoglobulin therapy in adult patients with polymyositis/dermatomyositis: a systematic literature review. Clin Rheumatol. 2012;31:801–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Hellmich B, Ehren M, Lindstaedt M, Meyer M, Pfohl M, Schatz H. Anti-MPO-ANCA-positive microscopic polyangiitis following subacute bacterial endocarditis. Clin Rheumatol. 2001;20:441–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Kasmani R, Okoli K, Naraharisetty K, Gunning W, Shapiro JI, Ratnam S. Microscopic polyangiitis triggered by recurrent methicillin-resistant Staphylococcus aureus bacteremia. Int Urol Nephrol. 2010;42:821–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Bell EK, Chugh SS, Cook WJ. A case of infection-associated antiproteinase-3-negative cytoplasmic antineutrophil cytoplasmic antibody pauci-immune focal necrotizing glomerulonephritis. Nephrol Dial Transplant. 2010;25:3119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med. 1996;335:16–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Booth AD, Almond MK, Burns A, Ellis P, Gaskin G, Neild GH, et al. Outcome of ANCA-associated renal vasculitis: a 5-year retrospective study. Am J Kidney Dis. 2003;41:776–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G, et al. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med. 2005;353:977–87.CrossRefPubMedGoogle Scholar
  53. 53.
    Freeley SJ, Coughlan AM, Popat RJ, Dunn-Walters DK, Robson MG. Granulocyte colony stimulating factor exacerbates antineutrophil cytoplasmic antibody vasculitis. Ann Rheum Dis. 2013;72:1053–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Roberts DM, Jones RB, Smith RM, Alberici F, Kumaratne DS, Burns S, et al. Immunoglobulin G replacement for the treatment of infective complications of rituximab-associated hypogammaglobulinemia in autoimmune disease: a case series. J Autoimmun. 2015;57:24–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Guillevin L, Mahr A, Cohen P, Larroche C, Queyrel V, Loustaud-Ratti V, et al. Short-term corticosteroids then lamivudine and plasma exchanges to treat hepatitis B virus-related polyarteritis nodosa. Arthritis Rheum. 2004;51:482–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Meyer MF, Hellmich B, Kotterba S, Schatz H. Cytomegalovirus infection in systemic necrotizing vasculitis: causative agent or opportunistic infection? Rheumatol Int. 2000;20:35–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Viguier M, Guillevin L, Laroche L. Treatment of parvovirus B19-associated polyarteritis nodosa with intravenous immune globulin. N Engl J Med. 2001;344:1481–2.CrossRefPubMedGoogle Scholar
  58. 58.
    Marie I, Miranda S, Girszyn N, Soubrane JC, Vandhuick T, Levesque H. Intravenous immunoglobulins as treatment of severe cutaneous polyarteritis nodosa. Intern Med J. 2012;42:459–62.CrossRefPubMedGoogle Scholar
  59. 59.
    Balbir-Gurman A, Nahir AM, Braun-Moscovici Y. Intravenous immunoglobulins in polyarteritis nodosa restricted to the limbs: case reports and review of the literature. Clin Exp Rheumatol. 2007;25:S28–30.PubMedGoogle Scholar
  60. 60.
    Barton JC, Herrera GA, Galla JH, Bertoli LF, Work J, Koopman WJ. Acute cryoglobulinemic renal failure after intravenous infusion of gamma globulin. Am J Med. 1987;82:624–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Yebra M, Barrios Y, Rincon J, Sanjuan I, Diaz-Espada F. Severe cutaneous vasculitis following intravenous infusion of gammaglobulin in a patient with type II mixed cryoglobulinemia. Clin Exp Rheumatol. 2002;20:225–7.PubMedGoogle Scholar
  62. 62.
    Karim MY. Immunodeficiency in the lupus clinic. Lupus. 2006;15:127–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Stein A, Winkelstein A, Agarwal A. Concurrent systemic lupus erythematosus and common variable hypogammaglobulinemia. Arthritis Rheum. 1985;28:462–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Baum CG, Chiorazzi N, Frankel S, Shepherd GM. Conversion of systemic lupus erythematosus to common variable hypogammaglobulinemia. Am J Med. 1989;87:449–56.CrossRefPubMedGoogle Scholar
  65. 65.
    Tarrant TK, Frazer DH, Aya-Ay JP, Patel DD. B cell loss leading to remission in severe systemic lupus erythematosus. J Rheumatol. 2003;30:412–4.PubMedGoogle Scholar
  66. 66.
    Sathkumara HD, De Silva NR, Handunnetti S, De Silva AD. Genetics of common variable immunodeficiency: role of transmembrane activator and calcium modulator and cyclophilin ligand interactor. Int J Immunogenet. 2015;42:239–53.CrossRefPubMedGoogle Scholar
  67. 67.
    Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92:34–48.CrossRefPubMedGoogle Scholar
  68. 68.
    Gobert D, Bussel JB, Cunningham-Rundles C, Galicier L, Dechartres A, Berezne A, et al. Efficacy and safety of rituximab in common variable immunodeficiency-associated immune cytopenias: a retrospective multicentre study on 33 patients. Br J Haematol. 2011;155:498–508.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hill F, Yonkof J, Chaitanya Arudra SK, Thomas J, Altorok N. Successful treatment of ANCA-associated vasculitis in the setting of common variable immunodeficiency using rituximab. Am J Ther. 2016;23:e1239–45.CrossRefPubMedGoogle Scholar
  70. 70.
    Zephir H, Bernard-Valnet R, Lebrun C, Outteryck O, Audoin B, Bourre B, et al. Rituximab as first-line therapy in neuromyelitis optica: efficiency and tolerability. J Neurol. 2015;262:2329–35.CrossRefPubMedGoogle Scholar
  71. 71.
    Rizzi M, Knoth R, Hampe CS, Lorenz P, Gougeon ML, Lemercier B, et al. Long-lived plasma cells and memory B cells produce pathogenic anti-GAD65 autoantibodies in Stiff Person Syndrome. PLoS One. 2010;5:e10838.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pathria M, Urbine D, Zumberg MS, Guarderas J. Management of granulomatous lymphocytic interstitial lung disease in a patient with common variable immune deficiency. BMJ Case Rep.2016;2016. https://doi.org/10.1136/bcr-2016-215624.
  73. 73.
    Jolles S, Carne E, Brouns M, El-Shanawany T, Williams P, Marshall C, et al. FDG PET-CT imaging of therapeutic response in granulomatous lymphocytic interstitial lung disease (GLILD) in common variable immunodeficiency (CVID). Clin Exp Immunol. 2017;187:138–45.CrossRefPubMedGoogle Scholar
  74. 74.
    Knight AK, Radigan L, Marron T, Langs A, Zhang L, Cunningham-Rundles C. High serum levels of BAFF, APRIL, and TACI in common variable immunodeficiency. Clin Immunol. 2007;124:182–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Barka N, Shen GQ, Shoenfeld Y, Alosachie IJ, Gershwin ME, Reyes H, et al. Multireactive pattern of serum autoantibodies in asymptomatic individuals with immunoglobulin A deficiency. Clin Diagn Lab Immunol. 1995;2:469–72.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Edwards E, Razvi S, Cunningham-Rundles C. IgA deficiency: clinical correlates and responses to pneumococcal vaccine. Clin Immunol. 2004;111:93–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Abolhassani H, Gharib B, Shahinpour S, Masoom SN, Havaei A, Mirminachi B, et al. Autoimmunity in patients with selective IgA deficiency. J Investig Allergol Clin Immunol. 2015;25:112–9.PubMedGoogle Scholar
  78. 78.
    Ren L, Campbell A, Fang H, Gautam S, Elavazhagan S, Fatehchand K, et al. Analysis of the effects of the Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib on monocyte Fc gamma Receptor (FcgammaR) function. J Biol Chem. 2016;291:3043–52.CrossRefPubMedGoogle Scholar
  79. 79.
    Rankin AL, Seth N, Keegan S, Andreyeva T, Cook TA, Edmonds J, et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J Immunol. 2013;191:4540–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine. 2003;82:373–84.CrossRefPubMedGoogle Scholar
  81. 81.
    Quartier P, Bustamante J, Sanal O, Plebani A, Debre M, Deville A, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced Cytidine Deaminase deficiency. Clin Immunol. 2004;110:22–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4:1023–8.CrossRefGoogle Scholar
  83. 83.
    Gullstrand B, Martensson U, Sturfelt G, Bengtsson AA, Truedsson L. Complement classical pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin Exp Immunol. 2009;156:303–11.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lood C, Gullstrand B, Truedsson L, Olin AI, Alm GV, Ronnblom L, et al. C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum. 2009;60:3081–90.CrossRefPubMedGoogle Scholar
  85. 85.
    Sauer AV, Brigida I, Carriglio N, Hernandez RJ, Scaramuzza S, Clavenna D, et al. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood. 2012;119:1428–39.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Humblet-Baron S, Sather B, Anover S, Becker-Herman S, Kasprowicz DJ, Khim S, et al. Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J Clin Invest. 2007;117:407–18.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tison BE, Nicholas SK, Abramson SL, Hanson IC, Paul ME, Seeborg FO, et al. Autoimmunity in a cohort of 130 pediatric patients with partial DiGeorge syndrome. J Allergy Clin Immunol. 2011;128:1115–7e1-3.CrossRefPubMedGoogle Scholar
  88. 88.
    Ferrando-Martinez S, Lorente R, Gurbindo D, De Jose MI, Leal M, Munoz-Fernandez MA, et al. Low thymic output, peripheral homeostasis deregulation, and hastened regulatory T cells differentiation in children with 22q11.2 deletion syndrome. J Pediatr. 2014;164:882–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Alabama at Birmingham (UAB), Division of Clinical Immunology and RheumatologyBirminghamUSA

Personalised recommendations