Advertisement

Systemic Sclerosis

  • Julia Spierings
  • Femke C. van Rhijn-Brouwer
  • Jacob M. van Laar
Chapter

Abstract

Systemic sclerosis (SSc) is a rare systemic autoimmune connective tissue disease with clinical and laboratory features of inflammation, vasculopathy, and fibrosis of the skin and visceral organs. The role of the microbiota is an area that is largely unexplored in SSc. An overview is given of the studies that investigated the composition of the microbiome in the gastrointestinal tract and the skin. Furthermore, hypotheses that may strengthen the rationale for further investigation of the microbiome in SSc are discussed. There is tentative evidence that alterations in the microbiome can be associated with SSc. However, more research is needed to establish if these altered populations are the cause or the result of the disease. The fact that SSc affects the skin, lungs, and gastrointestinal tract, which are prominent locations of the microbiome, makes it both more challenging and interesting to explore the role of microorganisms in the disease process.

Keywords

Microbiome Systemic sclerosis Borrelia Faecalibacterium prausnitzii 

Abbreviations

B. burgdorferi

Borrelia burgdorferi

CMV

Cytomegalovirus

DcSSc

Diffuse cutaneous systemic sclerosis

EC

Endothelial cells

F. prausnitzii

Faecalibacterium prausnitzii

GvHD

Graft versus host disease

HBV

Hepatitis B virus

LcSSc

Limited cutaneous systemic sclerosis

SIBO

Small intestinal bacterial overgrowth

SSc

Systemic sclerosis

References

  1. 1.
    LeRoy EC, Medsger TA Jr. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28(7):1573–6.PubMedGoogle Scholar
  2. 2.
    van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis. 2013;72(11):1747–55.  https://doi.org/10.1136/annrheumdis-2013-204424.CrossRefPubMedGoogle Scholar
  3. 3.
    Black CM. Scleroderma–clinical aspects. J Intern Med. 1993;234(2):115–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Steen VD. Clinical manifestations of systemic sclerosis. Semin Cutan Med Surg. 1998;17(1):48–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Ferri C, Sebastiani M, Lo Monaco A, et al. Systemic sclerosis evolution of disease pathomorphosis and survival. Our experience on Italian patients’ population and review of the literature. Autoimmun Rev. 2014;13(10):1026–34.  https://doi.org/10.1016/j.autrev.2014.08.029.CrossRefPubMedGoogle Scholar
  6. 6.
    Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.  https://doi.org/10.1056/NEJMra0806188.CrossRefPubMedGoogle Scholar
  7. 7.
    Ioannidis JP, Vlachoyiannopoulos PG, Haidich AB, et al. Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med. 2005;118(1):2–10.  https://doi.org/10.1016/j.amjmed.2004.04.031.CrossRefPubMedGoogle Scholar
  8. 8.
    Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002.  https://doi.org/10.1038/nrdp.2015.2.CrossRefPubMedGoogle Scholar
  9. 9.
    Jimenez SA. Role of endothelial to mesenchymal transition in the pathogenesis of the vascular alterations in systemic sclerosis. ISRN Rheumatol. 2013;2013:835948.  https://doi.org/10.1155/2013/835948.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pattanaik D, Brown M, Postlethwaite BC, et al. Pathogenesis of systemic sclerosis. Front Immunol. 2015;6:272.  https://doi.org/10.3389/fimmu.2015.00272.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Feghali-Bostwick C, Medsger TA Jr, Wright TM. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 2003;48(7):1956–63.  https://doi.org/10.1002/art.11173.CrossRefPubMedGoogle Scholar
  12. 12.
    Nietert PJ, Silver RM. Systemic sclerosis: environmental and occupational risk factors. Curr Opin Rheumatol. 2000;12(6):520–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Rubio-Rivas M, Moreno R, Corbella X. Occupational and environmental scleroderma. Systematic review and meta-analysis. Clin Rheumatol. 2017;36(3):569–82.  https://doi.org/10.1007/s10067-016-3533-1.CrossRefPubMedGoogle Scholar
  14. 14.
    Arnson Y, Amital H, Guiducci S, et al. The role of infections in the immunopathogenesis of systemic sclerosis–evidence from serological studies. Ann N Y Acad Sci. 2009;1173:627–32.  https://doi.org/10.1111/j.1749-6632.2009.04808.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grossman C, Dovrish Z, Shoenfeld Y, et al. Do infections facilitate the emergence of systemic sclerosis? Autoimmun Rev. 2011;10(5):244–7.  https://doi.org/10.1016/j.autrev.2010.09.010.CrossRefPubMedGoogle Scholar
  16. 16.
    Radic M, Martinovic Kaliterna D, Radic J. Infectious disease as aetiological factor in the pathogenesis of systemic sclerosis. Neth J Med. 2010;68(11):348–53.PubMedGoogle Scholar
  17. 17.
    Dolcino M, Puccetti A, Barbieri A, et al. Infections and autoimmunity: role of human cytomegalovirus in autoimmune endothelial cell damage. Lupus. 2015;24(4–5):419–32.  https://doi.org/10.1177/0961203314558677.CrossRefPubMedGoogle Scholar
  18. 18.
    Muryoi T, Kasturi KN, Kafina MJ, et al. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med. 1992;175(4):1103–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Randone SB, Guiducci S, Cerinic MM. Systemic sclerosis and infections. Autoimmun Rev. 2008;8(1):36–40.  https://doi.org/10.1016/j.autrev.2008.07.022.CrossRefPubMedGoogle Scholar
  20. 20.
    Heijnen T, Wilmer A, Blockmans D. Outcome of patients with systemic diseases admitted to the medical intensive care unit of a tertiary referral hospital: a single-centre retrospective study. Scand J Rheumatol. 2016;45(2):146–50.  https://doi.org/10.3109/03009742.2015.1067329.CrossRefPubMedGoogle Scholar
  21. 21.
    Woytala PJ, Morgiel E, Łuczak A, et al. The safety of intravenous cyclophosphamide in the treatment of rheumatic diseases. Adv Clin Exp Med. 2016;25(3):479–84.  https://doi.org/10.17219/acem/28736.CrossRefPubMedGoogle Scholar
  22. 22.
    Foocharoen C, Siriphannon Y, Mahakkanukrauh A, et al. A incidence rate and causes of infection in Thai systemic sclerosis patient. Int J Rheum Dis. 2012;15(3):277–83.  https://doi.org/10.1111/j.1756-185X.2012.01728.x. CrossRefPubMedGoogle Scholar
  23. 23.
    Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR scleroderma trials and research (EUSTAR) database. Ann Rheum Dis. 2010;69(10):1809–15.  https://doi.org/10.1136/ard.2009.114264.CrossRefPubMedGoogle Scholar
  24. 24.
    Steen V, Denton CP, Pope JE, et al. Digital ulcers: overt vascular disease in systemic sclerosis. Rheumatology (Oxford). 2009;48(Suppl 3):iii19–24.  https://doi.org/10.1093/rheumatology/kep105.CrossRefGoogle Scholar
  25. 25.
    Korn JH, Mayes M, Matcci Cerinic M, et al. Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum. 2004;50(12):3985–93.  https://doi.org/10.1002/art.20676.CrossRefPubMedGoogle Scholar
  26. 26.
    Giuggioli D, Manfredi A, Colaci M, et al. Scleroderma digital ulcers complicated by infection with fecal pathogens. Arthritis Care Res. 2012;64(2):295–7.  https://doi.org/10.1002/acr.20673.CrossRefGoogle Scholar
  27. 27.
    Andreasson K, Alrawi Z, Persson A, et al. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther. 2016;18(1):278.  https://doi.org/10.1186/s13075-016-1182-z.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65(11):4799–807.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Swidsinski A, Loening-Baucke V, Vaneechoutte M, et al. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm Bowel Dis. 2008;14(2):147–61.  https://doi.org/10.1002/ibd.20330.CrossRefPubMedGoogle Scholar
  30. 30.
    Miquel S, Martin R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61.  https://doi.org/10.1016/j.mib.2013.06.003.CrossRefPubMedGoogle Scholar
  31. 31.
    Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6.  https://doi.org/10.1073/pnas.0804812105.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Volkmann ER, Hoffman-Vold A, Chang Y, et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. 2017;4(1):e000134.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Patrone V, Puglisi E, Cardinali M, et al. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci Rep. 2017;7(1):14874.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang W, Chen L, Zhou R, et al. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52(2):398–406.  https://doi.org/10.1128/jcm.01500-13.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–1854.e1841.  https://doi.org/10.1053/j.gastro.2010.08.049.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126(6):1620–33.CrossRefGoogle Scholar
  37. 37.
    Di Cerbo A, Palmieri B, Aponte M, et al. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol. 2015;69(3):187–203.  https://doi.org/10.1136/jclinpath-2015-202976.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Martinez RC, Bedani R, Saad SM. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr. 2015;114(12):1993–2015.  https://doi.org/10.1017/s0007114515003864.CrossRefPubMedGoogle Scholar
  39. 39.
    Marie I, Leroi AM, Gourcerol G, et al. Fructose malabsorption in systemic sclerosis. Medicine (Baltimore). 2015;94(39):e1601.CrossRefGoogle Scholar
  40. 40.
    Volkmann ER, Chang YL, Barroso N, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol. 2016;68(6):1483–92.  https://doi.org/10.1002/art.39572.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Alekseyenko AV, Perez-Perez GI, De Souza A, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31.  https://doi.org/10.1186/2049-2618-1-31.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fahlen A, Engstrand L, Baker BS, et al. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15–22.  https://doi.org/10.1007/s00403-011-1189-x.CrossRefPubMedGoogle Scholar
  43. 43.
    Arron ST, Dimon MT, Li Z, et al. High Rhodotorula sequences in skin transcriptome of patients with diffuse systemic sclerosis. J Invest Dermatol. 2014;134(8):2138–45.  https://doi.org/10.1038/jid.2014.127.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gyger G, Baron M. Systemic sclerosis: gastrointestinal disease and its management. Rheum Dis Clin North Am. 2015;41(3):459–73.  https://doi.org/10.1016/j.rdc.2015.04.007.CrossRefPubMedGoogle Scholar
  45. 45.
    Tauber M, Avouac J, Benahmed A, et al. Prevalence and predictors of small intestinal bacterial overgrowth in systemic sclerosis patients with gastrointestinal symptoms. Clin Exp Rheumatol. 2014;32(6 Suppl 86):S-82–7.Google Scholar
  46. 46.
    Grace E, Shaw C, Whelan K, et al. Review article: small intestinal bacterial overgrowth–prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther. 2013;38(7):674–88.  https://doi.org/10.1111/apt.12456.CrossRefPubMedGoogle Scholar
  47. 47.
    Marie I, Ducrotte P, Denis P, et al. Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology (Oxford). 2009;48(10):1314–9.  https://doi.org/10.1093/rheumatology/kep226.CrossRefGoogle Scholar
  48. 48.
    Parodi A, Sessarego M, Greco A, et al. Small intestinal bacterial overgrowth in patients suffering from scleroderma: clinical effectiveness of its eradication. Am J Gastroenterol. 2008;103(5):1257–62.  https://doi.org/10.1111/j.1572-0241.2007.01758.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Ebert EC. Gastric and enteric involvement in progressive systemic sclerosis. J Clin Gastroenterol. 2008;42(1):5–12.  https://doi.org/10.1097/MCG.0b013e318042d625.CrossRefPubMedGoogle Scholar
  50. 50.
    Fiorucci S, Distrutti E, Bassotti G, et al. Effect of erythromycin administration on upper gastrointestinal motility in scleroderma patients. Scand J Gastroenterol. 1994;29(9):807–13.CrossRefPubMedGoogle Scholar
  51. 51.
    Asama T, Kimura Y, Kono T, et al. Effects of heat-killed Lactobacillus kunkeei YB38 on human intestinal environment and bowel movement: a pilot study. Benef Microbes. 2016;7(3):337–44.  https://doi.org/10.3920/bm2015.0132.CrossRefPubMedGoogle Scholar
  52. 52.
    Attaluri A, Jackson M, Valestin J, et al. Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS. Am J Gastroenterol. 2010;105(6):1407–11.  https://doi.org/10.1038/ajg.2009.655.CrossRefPubMedGoogle Scholar
  53. 53.
    Parthasarathy G, Chen J, Chen X, et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastroenterology. 2016;150(2):367–379.e361.  https://doi.org/10.1053/j.gastro.2015.10.005.CrossRefPubMedGoogle Scholar
  54. 54.
    Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82.  https://doi.org/10.1182/blood-2014-02-554725.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang W, Xu S, Ren Z, et al. Gut microbiota and allogeneic transplantation. J Transl Med. 2015;13:275.  https://doi.org/10.1186/s12967-015-0640-8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Whangbo J, Ritz J, Bhatt A. Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2017;52(2):183–90.  https://doi.org/10.1038/bmt.2016.206.CrossRefPubMedGoogle Scholar
  57. 57.
    Bujor AM, Haines P, Padilla C, et al. Ciprofloxacin has antifibrotic effects in scleroderma fibroblasts via downregulation of Dnmt1 and upregulation of Fli1. Int J Mol Med. 2012;30(6):1473–80.  https://doi.org/10.3892/ijmm.2012.1150.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mayes MD, O’Donnell D, Rothfield NF, et al. Minocycline is not effective in systemic sclerosis: results of an open-label multicenter trial. Arthritis Rheum. 2004;50(2):553–7.  https://doi.org/10.1002/art.20036.CrossRefPubMedGoogle Scholar
  59. 59.
    Frech TM, Khanna D, Maranian P, et al. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/distention. Clin Exp Rheumatol. 2011;29(2 Suppl 65):S22–5.PubMedGoogle Scholar
  60. 60.
    Rieder F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med. 2013;5(190):190ps110.  https://doi.org/10.1126/scitranslmed.3004731.CrossRefGoogle Scholar
  61. 61.
    Sakamoto N, Kakugawa T, Hara A, et al. Association of elevated alpha-defensin levels with interstitial pneumonia in patients with systemic sclerosis. Respir Res. 2015;16:148.  https://doi.org/10.1186/s12931-015-0308-1.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    van Bon L, Affandi AJ, Broen J, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. New Engl J Med. 2013;370(5):433–43.  https://doi.org/10.1056/NEJMoa1114576.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Espinoza-Leon F, Hassanhi-Hassanhi M, Arocha-Sandoval F, et al. Absence of Borrelia burgdorferi antibodies in the sera of Venezuelan patients with localized scleroderma (morphea). Invest Clin. 2006;47(3):283–8.PubMedGoogle Scholar
  64. 64.
    Goodlad JR, Davidson MM, Gordon P, et al. Morphoea and Borrelia burgdorferi: results from the Scottish highlands in the context of the world literature. Mol Pathol. 2002;55(6):374–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Prinz JC, Kutasi Z, Weisenseel P, et al. “Borrelia-associated early-onset morphea”: a particular type of scleroderma in childhood and adolescence with high titer antinuclear antibodies? Results of a cohort analysis and presentation of three cases. J Am Acad Dermatol. 2009;60(2):248–55.  https://doi.org/10.1016/j.jaad.2008.09.023.CrossRefPubMedGoogle Scholar
  66. 66.
    Weide B, Walz T, Garbe C. Is morphoea caused by Borrelia burgdorferi? A review. Br J Dermatol. 2000;142(4):636–44.CrossRefPubMedGoogle Scholar
  67. 67.
    Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244–69.  https://doi.org/10.1128/cmr.14.2.244-269.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dagenais M, MacDonald D, Baron M, et al. The Canadian systemic sclerosis oral health study IV: oral radiographic manifestations in systemic sclerosis compared with the general population. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(2):104–11.  https://doi.org/10.1016/j.oooo.2015.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gonzales TS, Coleman GC. Periodontal manifestations of collagen vascular disorders. Periodontol. 1999;21:94–105.CrossRefGoogle Scholar
  70. 70.
    Baron M, Hudson M, Dagenais M, et al. Relationship between disease characteristics and oral radiologic findings in systemic sclerosis: results from a Canadian oral health study. Arthritis Care Res. 2016;68(5):673–80.  https://doi.org/10.1002/acr.22739.CrossRefGoogle Scholar
  71. 71.
    Slocum C, Kramer C, Genco CA. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med. 2016;280(1):114–28.  https://doi.org/10.1111/joim.12476.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julia Spierings
    • 1
  • Femke C. van Rhijn-Brouwer
    • 1
    • 2
  • Jacob M. van Laar
    • 1
  1. 1.Department of Rheumatology and Clinical ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
  2. 2.Department of Nephrology and HypertensionUniversity Medical Centre UtrechtUtrechtThe Netherlands

Personalised recommendations