Advertisement

Inflammatory Bowel Disease

  • Wayne Young
  • Traci Jester
  • Matthew L. Stoll
  • Ana Izcue
Chapter

Abstract

The inflammatory bowel diseases (IBD) are characterized by chronic intestinal inflammation of unknown etiology. There are two main categories of IBD, ulcerative colitis (UC) and Crohn disease (CD), which are differentiated on the basis of pathologic features. The prevalence in the United States of both forms of IBD appears to be about 200 per 100,000 people (Kappelman et al., Clin Gastroenterol Hepatol 5(12):1424–1429, 2007), and there is geographic variation around the world as well as temporal variation (de Mesquita et al., Dig Liver Dis 40(1):3–11, 2008). Both forms of IBD can result in substantial impairments in quality of life, with complications including but not limited to malabsorption, intestinal adhesions and perforation, infections, and cancer (Kappelman et al., Clin Gastroenterol Hepatol 5(12):1424–1429, 2007). Although the pathogenesis is unclear, factors involving the human intestinal microbiota have long been suspected (Seneca and Henderson, Gastroenterology 15(1 1):34–39, 1950). Indeed, the role of the intestinal microbiota in IBD has been studied in far more depth in this condition than in any other systemic condition. While no solid consensus is observed among the studies, they coincide in the loss of diversity and changes in specific taxa. This chapter will review data on the contents of the microbiota, as well as the relationship between the microbiota and immunity, and the potential for treating IBD through manipulation of the microbiota.

Keywords

Antibiotic Fecal microbial transplantation Inflammatory bowel disease Microbiota Mucosal immunity Probiotic 

Abbreviations

Ahr

Aryl hydrocarbon receptor

ASCA

Anti-Saccharomyces cerevisiae antibodies

CD

Crohn disease

DSS

Dextran sulfate sodium

EEN

Exclusive enteral nutrition

FMT

Fecal microbial transplantation

FXR

Farnesoid X receptor

IBD

Inflammatory bowel disease

IL

Interleukin

ILC

Innate lymphoid cells

IPA

Indolepropionic acid

MyD88

Myeloid differentiation primary response 88

PSA

Polysaccharide A

SCFA

Short-chain fatty acids

SFB

Segmented filamentous bacteria

SpA

Spondyloarthritis

Treg

Regulatory T cells

TLR

Toll-like receptor

TNF

Tumor necrosis factor

UC

Ulcerative colitis

References

  1. 1.
    Kappelman MD, Rifas-Shiman SL, Kleinman K, Ollendorf D, Bousvaros A, Grand RJ, et al. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin Gastroenterol Hepatol. 2007;5(12):1424–9.CrossRefPubMedGoogle Scholar
  2. 2.
    de Mesquita MB, Civitelli F, Levine A. Epidemiology, genes and inflammatory bowel diseases in childhood. Dig Liver Dis. 2008;40(1):3–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Seneca H, Henderson E. Normal intestinal bacteria in ulcerative colitis. Gastroenterology. 1950;15(1 1):34–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014;40(6):833–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I, Equinda M, et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med. 2012;209(8):1445–56.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41(1):152–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 2012;336(6080):485–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, et al. Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol. 2016;17(2):179–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nakahashi-Oda C, Udayanga KG, Nakamura Y, Nakazawa Y, Totsuka N, Miki H, et al. Apoptotic epithelial cells control the abundance of Treg cells at barrier surfaces. Nat Immunol. 2016;17(4):441–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahern PP, Izcue A, Maloy KJ, Powrie F. The interleukin-23 axis in intestinal inflammation. Immunol Rev. 2008;226:147–59.CrossRefPubMedGoogle Scholar
  14. 14.
    Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2009;60:97–110.CrossRefPubMedGoogle Scholar
  15. 15.
    Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity. 2015;42(1):28–39.CrossRefPubMedGoogle Scholar
  16. 16.
    Goodlad RA, Ratcliffe B, Fordham JP, Wright NA. Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats? Gut. 1989;30(6):820–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G1055–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Silva MA, Jury J, Porras M, Vergara P, Perdue MH. Intestinal epithelial barrier dysfunction and dendritic cell redistribution during early stages of inflammation in the rat: role for TLR-2 and -4 blockage. Inflamm Bowel Dis. 2008;14(5):632–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hernández-Chirlaque C, Aranda CJ, Ocón B, Capitán-Cañadas F, Ortega-González M, Carrero JJ, et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohn’s Colitis. 2016;10(11):1324–35.CrossRefGoogle Scholar
  22. 22.
    Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Investig. 2013;123(2):700–11.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol. 2004;5(1):104–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Hoffmann TW, Pham H-P, Bridonneau C, Aubry C, Lamas B, Martin-Gallausiaux C, et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J. 2016;10(2):460–77.CrossRefPubMedGoogle Scholar
  26. 26.
    Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.CrossRefPubMedGoogle Scholar
  27. 27.
    Lecuyer E, Rakotobe S, Lengline-Garnier H, Lebreton C, Picard M, Juste C, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40(4):608–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163(2):367–80.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jonsson H. Segmented filamentous bacteria in human ileostomy samples after high-fiber intake. FEMS Microbiol Lett. 2013;342(1):24–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Investig. 2004;113(9):1296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128(7):2020–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM, Datsi A, et al. Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal Microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017;153(5):1320–37.e16.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Feng T, Qin H, Wang L, Benveniste EN, Elson CO, Cong Y. Th17 cells induce colitis and promote Th1 cell responses through IL-17 induction of innate IL-12 and IL-23 production. J Immunol. 2011;186(11):6313–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, et al. The impact of lactobacillus plantarum WCFS1 teichoic acid D-alanylation on the generation of effector and regulatory T-cells in healthy mice. PLoS One. 2013;8(4):e63099.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, et al. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One. 2011;6(11):e27961.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shen J, Zuo ZX, Mao AP. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm Bowel Dis. 2014;20(1):21–35.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.CrossRefPubMedGoogle Scholar
  40. 40.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48(4):612–26.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35.CrossRefPubMedGoogle Scholar
  46. 46.
    Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A. 2014;111(20):7421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183(10):6251–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Schubert K, Olde Damink SWM, von Bergen M, Schaap FG. Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev. 2017;279(1):23–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut. 2011;60(4):463–72.CrossRefPubMedGoogle Scholar
  50. 50.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan Catabolites from Microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via Interleukin-22. Immunity. 2013;39(2):372–85.CrossRefPubMedGoogle Scholar
  51. 51.
    Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Lanis JM, Alexeev EE, Curtis VF, Kitzenberg DA, Kao DJ, Battista KD, et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10(5):1133–44.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648–52.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hansen R, Russell RK, Reiff C, Louis P, McIntosh F, Berry SH, et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol. 2012;107(12):1913–22.CrossRefPubMedGoogle Scholar
  57. 57.
    Prideaux L, Kang S, Wagner J, Buckley M, Mahar JE, De Cruz P, et al. Impact of ethnicity, geography, and disease on the microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(13):2906–18.CrossRefPubMedGoogle Scholar
  58. 58.
    Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One. 2013;8(11):e80702.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, et al. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine (Baltimore). 2014;93(8):e51.CrossRefGoogle Scholar
  60. 60.
    Perez-Brocal V, Garcia-Lopez R, Nos P, Beltran B, Moret I, Moya A. Metagenomic analysis of Crohn’s disease patients identifies changes in the Virome and Microbiome related to disease status and therapy, and detects potential interactions and biomarkers. Inflamm Bowel Dis. 2015;21(11):2515–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Quince C, Ijaz UZ, Loman N, Eren AM, Saulnier D, Russell J, et al. Extensive modulation of the fecal Metagenome in children with Crohn’s disease during exclusive enteral nutrition. Am J Gastroenterol. 2015;110(12):1718–29. quiz 30.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dunn KA, Moore-Connors J, MacIntyre B, Stadnyk AW, Thomas NA, Noble A, et al. Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn’s disease. Inflamm Bowel Dis. 2016;22(12):2853–62.CrossRefPubMedGoogle Scholar
  63. 63.
    Hedin C, van der Gast CJ, Rogers GB, Cuthbertson L, McCartney S, Stagg AJ, et al. Siblings of patients with Crohn’s disease exhibit a biologically relevant dysbiosis in mucosal microbial metacommunities. Gut. 2016;65(6):944–53.CrossRefPubMedGoogle Scholar
  64. 64.
    Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5):e01250–16.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J Crohns Colitis. 2016;10(3):296–305.CrossRefPubMedGoogle Scholar
  66. 66.
    Mar JS, LaMere BJ, Lin DL, Levan S, Nazareth M, Mahadevan U, et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. MBio. 2016;7(4):e01072–16.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shaw KA, Bertha M, Hofmekler T, Chopra P, Vatanen T, Srivatsa A, et al. Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Med. 2016;8(1):75.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2016;66(6):1039–48.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ijaz UZ, Quince C, Hanske L, Loman N, Calus ST, Bertz M, et al. The distinct features of microbial “dysbiosis” of Crohn’s disease do not occur to the same extent in their unaffected, genetically-linked kindred. PLoS One. 2017;12(2):e0172605.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Knoll RL, Forslund K, Kultima JR, Meyer CU, Kullmer U, Sunagawa S, et al. Gut microbiota differs between children with Inflammatory Bowel Disease and healthy siblings in taxonomic and functional composition—a metagenomic analysis. Am J Physiol Gastrointest Liver Physiol. 2016;312(4):G327–39. ajpgi 00293 2016.CrossRefPubMedGoogle Scholar
  71. 71.
    Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, et al. A microbial signature for Crohn’s disease. Gut. 2017;66(5):813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis. 2010;16(12):2034–42.CrossRefPubMedGoogle Scholar
  74. 74.
    Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One. 2012;7(11):e49138.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015;64(3):447–58.CrossRefPubMedGoogle Scholar
  76. 76.
    Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome. 2017;5(1):36.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nguyen GC, Kaplan GG, Harris ML, Brant SR. A national survey of the prevalence and impact of Clostridium difficile infection among hospitalized inflammatory bowel disease patients. Am J Gastroenterol. 2008;103(6):1443–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–54.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kolho KL, Korpela K, Jaakkola T, Pichai MV, Zoetendal EG, Salonen A, et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am J Gastroenterol. 2015;110(6):921–30.CrossRefPubMedGoogle Scholar
  81. 81.
    Naftali T, Reshef L, Kovacs A, Porat R, Amir I, Konikoff FM, et al. Distinct microbiotas are associated with ileum-restricted and Colon-involving Crohn’s disease. Inflamm Bowel Dis. 2016;22(2):293–302.CrossRefPubMedGoogle Scholar
  82. 82.
    He Q, Gao Y, Jie Z, Yu X, Laursen JM, Xiao L, et al. Two distinct metacommunities characterize the gut microbiota in Crohn’s disease patients. Gigascience. 2017;6(7):1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Assa A, Butcher J, Li J, Elkadri A, Sherman PM, Muise AM, et al. Mucosa-associated ileal microbiota in new-onset pediatric Crohn’s disease. Inflamm Bowel Dis. 2016;22(7):1533–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Tedjo DI, Smolinska A, Savelkoul PH, Masclee AA, van Schooten FJ, Pierik MJ, et al. The fecal microbiota as a biomarker for disease activity in Crohn’s disease. Sci Rep. 2016;6:35216.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, et al. Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol. 2015;30(2):268–78.CrossRefPubMedGoogle Scholar
  86. 86.
    Qiu X, Zhang M, Yang X, Hong N, Yu C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis. 2013;7(11):e558–68.CrossRefPubMedGoogle Scholar
  87. 87.
    Rossi O, van Berkel LA, Chain F, Tanweer Khan M, Taverne N, Sokol H, et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep. 2016;6:18507.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kellermayer R, Mir SA, Nagy-Szakal D, Cox SB, Dowd SE, Kaplan JL, et al. Microbiota separation and C-reactive protein elevation in treatment-naive pediatric granulomatous Crohn disease. J Pediatr Gastroenterol Nutr. 2012;55(3):243–50.CrossRefPubMedGoogle Scholar
  89. 89.
    Tyler AD, Knox N, Kabakchiev B, Milgrom R, Kirsch R, Cohen Z, et al. Characterization of the gut-associated microbiome in inflammatory pouch complications following ileal pouch-anal anastomosis. PLoS One. 2013;8(9):e66934.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Shah R, Cope JL, Nagy-Szakal D, Dowd S, Versalovic J, Hollister EB, et al. Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis. Gut Microbes. 2016;7(5):384–96.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45.CrossRefPubMedGoogle Scholar
  92. 92.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  93. 93.
    Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304–14.CrossRefPubMedGoogle Scholar
  94. 94.
    Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr. 2006;96(3):570–7.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. 2014;87(1):30–40.CrossRefPubMedGoogle Scholar
  96. 96.
    Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. 2007;6(2):546–51.CrossRefPubMedGoogle Scholar
  99. 99.
    Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011;10(9):4208–18.CrossRefPubMedGoogle Scholar
  100. 100.
    Dunn KA, Moore-Connors J, MacIntyre B, Stadnyk A, Thomas NA, Noble A, et al. The gut microbiome of pediatric Crohn’s disease patients differs from healthy controls in genes that can influence the balance between a healthy and dysregulated immune response. Inflamm Bowel Dis. 2016;22(11):2607–18.CrossRefPubMedGoogle Scholar
  101. 101.
    Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36.CrossRefPubMedGoogle Scholar
  102. 102.
    Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59–65.CrossRefPubMedGoogle Scholar
  103. 103.
    Zhou Y, Zhi F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int. 2016;2016:5828959.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.CrossRefPubMedGoogle Scholar
  105. 105.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–7.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. 2008;35(8):1500–5.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2017;69(1):114–21.CrossRefPubMedGoogle Scholar
  111. 111.
    Nwosu FC, Thorkildsen LT, Avershina E, Ricanek P, Perminow G, Brackmann S, et al. Age-dependent fecal bacterial correlation to inflammatory bowel disease for newly diagnosed untreated children. Gastroenterol Res Pract. 2013;2013:302398.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16(6):486.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Tejesvi MV, Arvonen M, Kangas SM, Keskitalo PL, Pirttila AM, Karttunen TJ, et al. Faecal microbiome in new-onset juvenile idiopathic arthritis. Eur J Clin Microbiol Infect Dis. 2016;35(3):363–70.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Aggarwal A, Sarangi AN, Gaur P, Shukla A, Aggarwal R. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin Exp Immunol. 2017;187(3):480–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5(1):82–91.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–53.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One. 2012;7(6):e39242.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut. 2015;64(10):1553–61.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–76.CrossRefPubMedGoogle Scholar
  120. 120.
    Woting A, Blaut M. The intestinal microbiota in metabolic disease. Forum Nutr. 2016;8(4):202.Google Scholar
  121. 121.
    Asquith MJ, Stauffer P, Davin S, Mitchell C, Lin P, Rosenbaum JT. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 2016;68(9):2151–62.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Vaile JH, Meddings JB, Yacyshyn BR, Russell AS, Maksymowych WP. Bowel permeability and CD45RO expression on circulating CD20+ B cells in patients with ankylosing spondylitis and their relatives. J Rheumatol. 1999;26(1):128–35.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Munkholm P, Langholz E, Hollander D, Thornberg K, Orholm M, Katz KD, et al. Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut. 1994;35(1):68–72.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol Res Pract. 2013;2013:431231.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A. 2013;110(33):13582–7.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Pitcher MC, Beatty ER, Harris RM, Waring RH, Cummings JH. Sulfur metabolism in ulcerative colitis: investigation of detoxification enzymes in peripheral blood. Dig Dis Sci. 1998;43(9):2080–5.CrossRefPubMedGoogle Scholar
  127. 127.
    Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112(32):10038–43.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Wang W, Jovel J, Halloran B, Wine E, Patterson J, Ford G, et al. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm Bowel Dis. 2015;21(6):1419–27.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Chassaing B, Rolhion N, de Vallee A, Salim SY, Prorok-Hamon M, Neut C, et al. Crohn disease—associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Investig. 2011;121(3):966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Bucker R, Schulz E, Gunzel D, Bojarski C, Lee IF, John LJ, et al. α-Haemolysin of Escherichia coli in IBD: a potentiator of inflammatory activity in the colon. Gut. 2014;63(12):1893–901.CrossRefPubMedGoogle Scholar
  131. 131.
    Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29.CrossRefPubMedGoogle Scholar
  132. 132.
    He F, Morita H, Ouwehand AC, Hosoda M, Hiramatsu M, Kurisaki J, et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol Immunol. 2002;46(11):781–5.CrossRefPubMedGoogle Scholar
  133. 133.
    Medina M, Izquierdo E, Ennahar S, Sanz Y. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin Exp Immunol. 2007;150(3):531–8.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Elian SD, Souza EL, Vieira AT, Teixeira MM, Arantes RM, Nicoli JR, et al. Bifidobacterium longum subsp. infantis BB-02 attenuates acute murine experimental model of inflammatory bowel disease. Benefic Microbes. 2015;6(3):277–86.CrossRefGoogle Scholar
  135. 135.
    Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1948–56.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54(9):1232–6.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–7.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Hansen JJ, Sartor RB. Therapeutic manipulation of the microbiome in IBD: current results and future approaches. Curr Treat Options Gastroenterol. 2015;13(1):105–20.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Lewis JD, Abreu MT. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology. 2017;152(2):398–414.e6.CrossRefPubMedGoogle Scholar
  140. 140.
    Nitzan O, Elias M, Peretz A, Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1078–87.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Reinisch W. Fecal microbiota transplantation in inflammatory bowel disease. Dig Dis. 2017;35(1–2):123–6.CrossRefPubMedGoogle Scholar
  142. 142.
    MacLellan A, Moore-Connors J, Grant S, Cahill L, Langille MGI, Van Limbergen J. The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn’s disease: a review. Nutrients. 2017;9(5):0447.CrossRefGoogle Scholar
  143. 143.
    Richman E, Rhodes JM. Review article: evidence-based dietary advice for patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38(10):1156–71.CrossRefPubMedGoogle Scholar
  144. 144.
    Dziechciarz P, Horvath A, Shamir R, Szajewska H. Meta-analysis: enteral nutrition in active Crohn’s disease in children. Aliment Pharmacol Ther. 2007;26(6):795–806.CrossRefPubMedGoogle Scholar
  145. 145.
    Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J Crohns Colitis. 2014;8(10):1179–207.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm Bowel Dis. 2014;20(5):861–71.CrossRefPubMedGoogle Scholar
  147. 147.
    Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011;60(7):923–9.CrossRefPubMedGoogle Scholar
  148. 148.
    Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–803.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Cojocariu C, Stanciu C, Stoica O, Singeap AM, Sfarti C, Girleanu I, et al. Clostridium difficile infection and inflammatory bowel disease. Turk J Gastroenterol. 2014;25(6):603–10.CrossRefPubMedGoogle Scholar
  150. 150.
    Kerman DH, Deshpande AR. Gut microbiota and inflammatory bowel disease: the role of antibiotics in disease management. Postgrad Med. 2014;126(4):7–19.CrossRefPubMedGoogle Scholar
  151. 151.
    Wang SL, Wang ZR, Yang CQ. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp Ther Med. 2012;4(6):1051–6.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Derikx LA, Dieleman LA, Hoentjen F. Probiotics and prebiotics in ulcerative colitis. Best Pract Res Clin Gastroenterol. 2016;30(1):55–71.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Durchschein F, Petritsch W, Hammer HF. Diet therapy for inflammatory bowel diseases: the established and the new. World J Gastroenterol. 2016;22(7):2179–94.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60(Suppl 2):S129–34.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wang AY, Popov J, Pai N. Fecal microbial transplant for the treatment of pediatric inflammatory bowel disease. World J Gastroenterol. 2016;22(47):10304–15.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–9.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Fischer M, Kao D, Kelly C, Kuchipudi A, Jafri SM, Blumenkehl M, et al. Fecal microbiota transplantation is safe and efficacious for recurrent or refractory Clostridium difficile infection in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2016;22(10):2402–9.CrossRefPubMedGoogle Scholar
  158. 158.
    Zhang FM, Wang HG, Wang M, Cui BT, Fan ZN, Ji GZ. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn’s disease. World J Gastroenterol. 2013;19(41):7213–6.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Borody TJ, Warren EF, Leis S, Surace R, Ashman O. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol. 2003;37(1):42–7.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Keshteli AH, Millan B, Madsen KL. Pretreatment with antibiotics may enhance the efficacy of fecal microbiota transplantation in ulcerative colitis: a meta-analysis. Mucosal Immunol. 2017;10(2):565–6.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Baxter M, Colville A. Adverse events in faecal microbiota transplant: a review of the literature. J Hosp Infect. 2016;92(2):117–27.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Wyllie R, Hyams J. Pediatric gastrointestinal and liver diseases. Philladelphia: Elsevier; 2015.Google Scholar
  163. 163.
    Davenport M, Poles J, Leung JM, Wolff MJ, Abidi WM, Ullman T, et al. Metabolic alterations to the mucosal microbiota in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(4):723–31.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Reshef L, Kovacs A, Ofer A, Yahav L, Maharshak N, Keren N, et al. Pouch inflammation is associated with a decrease in specific bacterial taxa. Gastroenterology. 2015;149(3):718–27.CrossRefPubMedGoogle Scholar
  165. 165.
    Forbes JD, Van Domselaar G, Bernstein CN. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm Bowel Dis. 2016;22(4):817–25.CrossRefPubMedGoogle Scholar
  166. 166.
    Hasler R, Sheibani-Tezerji R, Sinha A, Barann M, Rehman A, Esser D, et al. Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut. 2016;66(12):2087–97.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Tyler AD, Kirsch R, Milgrom R, Stempak JM, Kabakchiev B, Silverberg MS. Microbiome heterogeneity characterizing intestinal tissue and inflammatory bowel disease phenotype. Inflamm Bowel Dis. 2016;22(4):807–16.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Mukhopadhya I, Hansen R, Meharg C, Thomson JM, Russell RK, Berry SH, et al. The fungal microbiota of de-novo paediatric inflammatory bowel disease. Microbes Infect. 2015;17(4):304–10.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    El Mouzan M, Wang F, Al Mofarreh M, Menon R, Al Barrag A, Korolev KS, et al. Fungal Microbiota Profile in Newly Diagnosed Treatment-naïve Children with Crohn’s Disease. J Crohns Colitis. 2017;11(5):586–592.Google Scholar
  170. 170.
    Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A. 2012;109(2):594–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wayne Young
    • 1
    • 2
    • 3
  • Traci Jester
    • 4
  • Matthew L. Stoll
    • 5
  • Ana Izcue
    • 6
  1. 1.Food Nutrition and Health Team, AgResearchPalmerston NorthNew Zealand
  2. 2.Riddet Institute, Massey UniversityPalmerston NorthNew Zealand
  3. 3.High-Value Nutrition, National Science ChallengeAucklandNew Zealand
  4. 4.Department of Pediatrics, Division of GastroenterologyUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Department of Pediatrics, Division of RheumatologyUniversity of Alabama at BirminghamBirminghamUSA
  6. 6.Institute of Molecular Medicine, RWTH Aachen UniversityAachenGermany

Personalised recommendations