Advertisement

Gene Therapy and Free Flaps for Therapeutic Reconstructive Surgery

  • Christopher R. Davis
  • Peter A. Than
  • Geoffrey C. Gurtner
Chapter

Abstract

Surgery, whether alone or in combination with adjuvant or neoadjuvant therapy, is a major component in the treatment of oncological disease. Patients with ablative defects following surgical resection may undergo reconstructive surgery, with the aim of returning the patient to a premorbid level, for example, a mastectomy for cancer clearance and a breast reconstruction for chest wall reconstruction. However, despite multidisciplinary involvement, aggressive surgical margins, and additional therapy, tumor recurrence may occur. Autologous tissue used for reconstruction may provide a potential therapeutic source to patients and promote long-term tumor eradication by secreting therapeutic factors. This review focuses on gene therapy as a means of ex vivo transduction of autologous tissue and describes how reconstructive tissue can offer both reconstructive and therapeutic roles in the form of therapeutic flaps.

Notes

Contributors

All authors contributed to the design, writing, and editing of this manuscript and granted approval of the final version.

Conflicts of Interest

None of the authors have any conflicts of interest to declare.

References

  1. 1.
    Taylor GI, Daniel RK. The free flap: composite tissue transfer by vascular anastomosis. Aust N Z J Surg. 1971;43(1):1–3.CrossRefGoogle Scholar
  2. 2.
    Daniel RK, Taylor GI. Distant transfer of an island flap by microvascular anastomoses. A clinical technique. Plast Reconstr Surg. 1973;52(2):111–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Mathes SJ. Muscle flaps and their blood supply. In: Aston SJ, Beasley RW, Thorne CW, editors. Plastic surgery. 5th ed. New York: Lippincott-Raven; 1997. p. 61–71.Google Scholar
  4. 4.
    Dempsey MP, Hamou C, Michaels J, Ghali S, Jazayeri L, Grogan RH, Gurtner GC. Using genetically modified microvascular free flaps to deliver local cancer immunotherapy with minimal systemic toxicity. Plast Reconstr Surg. 2008;121(5):1541–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Michaels J, Levine JP, Hazen A, Ceradini DJ, Galiano RD, Soltanian H, Gurtner GC. Biologic brachytherapy: ex vivo transduction of microvascular beds for efficient, targeted gene therapy. Plast Reconstr Surg. 2006;118(1):54–65.CrossRefPubMedGoogle Scholar
  6. 6.
    Allen RJ, Treece P. Deep inferior epigastric perforator flap for breast reconstruction. Ann Plast Surg. 1994;32:32–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Blondeel PN, Boeckx WD. Refinements in free flap breast reconstruction: the free bilateral deep inferior epigastric perforator flap anastomosed to internal mammary artery. Br J Plast Surg. 1994;47:495–501.CrossRefPubMedGoogle Scholar
  8. 8.
    Wei FC, Jain V, Celik N, et al. Have we found an ideal soft tissue flap? An experience with 672 anterolateral thigh flaps. Plast Reconstr Surg. 2002;109:2219.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin F, Grinsell D. Free anterolateral thigh perforator flap for head and neck cancer resection in a nonagenarian. Mod Plast Surg. 2012;2(1):1–4.CrossRefGoogle Scholar
  10. 10.
    Tanzini. Sporo il nito nuova processo di aupertozione della menuelle. Riforma Med. 1906;22:757.Google Scholar
  11. 11.
    d’Este S. La technique de l’amputation de la mamelle pour carcinome mammaire. Rev Chir. 1912;45:164.Google Scholar
  12. 12.
    Cheng MH, Saint-Cyr M, Ali RS, Chang KP, Hao SP, Wei FC. Osteomyocutaneous peroneal artery-based combined flap for reconstruction of composite and en bloc mandibular defects. Head Neck. 2009;31(3):361–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Moon HK, Taylor GI. The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system. Plast Reconstr Surg. 1988;82:815–32.CrossRefPubMedGoogle Scholar
  14. 14.
    Saint-Cyr M, Schaverien M, Arbique G, et al. Three- and four-dimensional computed tomographic angiography and venography for the investigation of the vascular anatomy and perfusion of perforator flaps. Plast Reconstr Surg. 2008;121:772–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Blondeel PN, Beyens G, Verhaeghe R, et al. Doppler flowmetry in the planning of perforator flaps. Br J Plast Surg. 1998;51(3):202–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Rozen WM, Ribuffo D, Atzeni M, et al. Current state of the art in perforator flap imaging with computed tomographic angiography. Surg Radiol Anat. 2009;31:631–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Pacifico MD, See MS, Cavale N, et al. Preoperative planning for DIEP breast reconstruction: early experience of the use of computerised tomography angiography with VoNavix 3D software for perforator navigation. J Plast Reconstr Aesthet Surg. 2009;62(11):1464–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Dean C, Chetty U, Forrest AP. Effects of immediate breast reconstruction on psychosocial morbidity after mastectomy. Lancet. 1983;1:459–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Elder EE, Brandberg Y, Bjorklund T, et al. Quality of life and patient satisfaction in breast cancer patients after immediate breast reconstruction: a prospective study. Breast. 2005;14:201–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000;7:2–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Check E. Gene therapy: a tragic setback. Nature. 2002;420:116–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Check E. Cancer fears cast doubts on future of gene therapy. Nature. 2003;421:678.CrossRefPubMedGoogle Scholar
  23. 23.
    Gene therapy clinical trials worldwide. Hoboken, NJ: John Wiley and Sons; 2007. www.wiley.com/legacy/wileychi/genmed/clinical
  24. 24.
    Kootstra NA, Verma IM. Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol. 2003;43:413–39.CrossRefPubMedGoogle Scholar
  25. 25.
    Blacklow NR, Hoggan MD, Sereno MS, et al. A seroepidemiologic study of adenovirus-associated virus infection in infants and children. Am J Epidemiol. 1971;94:359–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Bantel-Schaal U. Adeno-associated parvoviruses inhibit growth of cells derived from malignant human tumors. Int J Cancer. 1990;45:190–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Hermonat PL. Adeno-associated virus inhibits human papillomavirus type 16: a viral interaction implicated in cervical cancer. Cancer Res. 1994;54:2278–81.PubMedGoogle Scholar
  28. 28.
    Walz CM, Anisi TR, Schlehofer JR, et al. Detection of infectious adeno-associated virus particles in human cervical biopsies. Virology. 1998;247:97–105.CrossRefPubMedGoogle Scholar
  29. 29.
    Michaels J, Dobryansky M, Galiano RD, et al. Ex vivo transduction of microvascular free flaps for localized peptide delivery. Ann Plast Surg. 2004;52:581–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson-Saliba M, Jans DA. Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets. 2001;2:371–99.CrossRefPubMedGoogle Scholar
  31. 31.
    Wells DJ. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol Toxicol. 2010;26:21–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Wolff JA, Budker V. The mechanism of naked DNA uptake and expression. Adv Genet. 2005;54:3–20.PubMedGoogle Scholar
  33. 33.
    Ghali S, Bhatt KA, Dempsey MP, Jones DM, Singh S, Aarabi S, Butler PE, Gallo RL, Gurtner GC. Treating chronic wound infections with genetically modified free flaps. Plast Reconstr Surg. 2009;123(4):1157–68.CrossRefGoogle Scholar
  34. 34.
    Ghali S, Dempsey MP, Jones DM, Grogan RH, Butler PE, Gurtner GC. Plastic surgical delivery systems for targeted gene therapy. Ann Plast Surg. 2008;60:323–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther. 2004;15:35.CrossRefPubMedGoogle Scholar
  36. 36.
    Sung M, Chen SH, Thung SM, et al. Intratumoral delivery of adenovirus-mediated interleukin-12 gene in mice with metastatic cancer in the liver. Hum Gene Ther. 2002;13:731.CrossRefPubMedGoogle Scholar
  37. 37.
    Portielje JE, Gratama JW, van Ojik HH, Stoter G, Kruit WH. IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother. 2003;52:133.PubMedGoogle Scholar
  38. 38.
    Stiefeld SM, Graziani AL, MacGregor RR, Esterhai JL Jr. Toxicities of antimicrobial agents used to treat osteomyelitis. Orthop Clin North Am. 1991;22:439–65.PubMedGoogle Scholar
  39. 39.
    Holtom PD, Patzakis MJ. Newer methods of antimicrobial delivery for bone and joint infections. Instr Course Lect. 2003;52:745–9.PubMedGoogle Scholar
  40. 40.
    Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22(S2):S133–44.CrossRefPubMedGoogle Scholar
  41. 41.
    Henry SL, Galloway KP. Local antibacterial therapy for the management of orthopaedic infections: pharmacokinetic considerations. Clin Pharmacokinet. 1995;29:36–45.CrossRefPubMedGoogle Scholar
  42. 42.
    Moehring HD, Gravel C, Chapman MW, Olsen SA. Comparison of antibiotic beads and intravenous antibiotics in open fractures. Clin Orthop. 2000;372:254–61.CrossRefGoogle Scholar
  43. 43.
    Hedstrom SA, Lidgren L, Torholm C, Onnerfalt R. Antibiotic containing bone cement beads in the treatment of deep muscle and skeletal infections. Acta Orthop Scand. 1980;51:863–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Carretero M, Del Río M, García M, et al. A cutaneous gene therapy approach to treat infection through keratinocyte-targeted overexpression of antimicrobial peptides. FASEB J. 2004;18(15):1931–3.CrossRefPubMedGoogle Scholar
  45. 45.
    Munro AJ. An overview of randomised controlled trials of adjuvant chemotherapy in head and neck cancer. Br J Cancer 1995;71:83–91.Google Scholar
  46. 46.
    Clayman GL, el-Naggar AK, et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res. 1995;55(1):1–6.PubMedGoogle Scholar
  47. 47.
    Clayman GL, Frank DK, et al. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res. 1999;5(7):1715–22.PubMedGoogle Scholar
  48. 48.
    Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther. 2005;16(9):1016–27.CrossRefPubMedGoogle Scholar
  49. 49.
    Wilson JM. Gendicine: the first commercial gene therapy product. Hum Gene Ther. 2005;16(9):1014–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Ganly I, Kirn D, Eckhardt SG, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6(3):798–806.PubMedGoogle Scholar
  51. 51.
    Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19(2):289–98.CrossRefPubMedGoogle Scholar
  52. 52.
    Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6(8):879–85.CrossRefPubMedGoogle Scholar
  53. 53.
    Li QF, Reis ED, Zhang WX, Silver L, Fallon JT, Weinberg H. Accelerated flap prefabrication with vascular endothelial growth factor. J Reconstr Microsurg. 2000;16:45.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang F, Fischer K, Komorowska-Timek E, et al. Improvement of skin paddle survival by application of vascular endothelial growth factor in a rat TRAM flap model. Ann Plast Surg. 2001;46:314.CrossRefPubMedGoogle Scholar
  55. 55.
    Lu F, Mizuno H, Uysal CA, Cai X, Ogawa R, Hyakusoku H. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast Reconstr Surg. 2008;121(1):50–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Gomez-Navarro J, Arafat W, Xiang J. Gene therapy for carcinoma of the breast. Pro-apoptotic gene therapy. Breast Cacner Res. 2000;2:32–44.CrossRefGoogle Scholar
  57. 57.
    Elledge RM, Allred DC. The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat. 1994;32:39–47.CrossRefPubMedGoogle Scholar
  58. 58.
    Berns EM, De Witte HH, Klijn JG, et al. Prognostic value of TP53 protein accumulation in human primary breast cancer: an analysis by luminometric immunoassay on 1491 tumor cytosols. Anticancer Res. 1997;17:3003–6.PubMedGoogle Scholar
  59. 59.
    White E. Tumor biology. p53, guardian of Rb. Nature. 1994;371:21–2.CrossRefPubMedGoogle Scholar
  60. 60.
    Wu J. Apoptosis and angiogenesis: two promising tumor markers in breast cancer. Anticancer Res. 1996;16:2233–9.PubMedGoogle Scholar
  61. 61.
    Sierra A, Lloveras B, Castellsague X, et al. Bcl-2 expression is associated with lymph node metastasis in human ductal breast carcinoma. Int J Cancer. 1995;60:54–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Vakkala M, Lahteenmaki K, Raunio H, Paakko P, Soini Y. Apoptosis during breast carcinoma progression. Clin Cancer Res. 1999;5:319–24.PubMedGoogle Scholar
  63. 63.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Takamiya Y, Short MP, Ezzeddine ZD, et al. Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neurosci Res. 1992;33:493–503.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christopher R. Davis
    • 1
  • Peter A. Than
    • 1
  • Geoffrey C. Gurtner
    • 1
  1. 1.Department of Surgery, Division of Plastic SurgeryStanford University School of MedicineStanfordUSA

Personalised recommendations