Gene Therapy in Pathologic Scars

  • Chenyu Huang
  • Longwei Liu
  • Zhifeng You
  • Yanan Du
  • Rei OgawaEmail author


Hypertrophic scars (HSs) and keloids, as the commonly seen pathological scars, are characteristic of rampant proliferation of fibroblasts, accumulation of collagens in the ECM, and altered regulation of growth factors/cytokines. Though their etiology still remains unclear and the postsurgical recurrence keeps a high profile, great efforts have been made on potential gene therapies for more specific, long-lived and hopefully cheaper results, thanks to the update progress in gene therapy techniques. Here we classify the current gene therapy strategies for HSs and keloids on their targets of cellular behavior, extracellular collagen production, or growth factors/chemokines involved. Namely, (1) gene therapies that alter the balance between cellular proliferation and apoptosis by inducing fibroblast apoptosis or decreasing its proliferation, using suicide gene tools or manipulating miRNA-21 levels respectively; (2) gene therapies that alter the balance between collagen synthesis and degradation focusing on directly reducing collagen production through miRNA-29b or inducing collagen degradation through TIMP siRNAs, or decreasing collagen accumulation through PAI-1-targeting siRNAs or HSP47-siRNAs. In particular, the interfibrillar bonding of collagens is also successfully regulated by antisense oligonucleotides of the non-collagen matrix ingredients (e.g. decorin) and thereby interfering in collagen remodeling; and (3) gene therapies that alter the balance between pro-fibrotic and anti-fibrotic growth factors/cytokines. Different TGF-β subtypes, their receptors, and the TGF-β signaling pathway molecules demonstrate to be potential gene therapy candidates in scar treatments. A better understanding of the current progress in gene therapies for pathological scars will lead to the development of novel interventions that can prevent, reduce, or even reverse the formation and/or progression of HSs or keloids.


  1. 1.
    Lee JY, Yang CC, Chao SC, Wong TW. Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol. 2004;26(5):379–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang C, Akaishi S, Hyakusoku H, Ogawa R. Are keloid and hypertrophic scar different forms of the same disorder? A fibroproliferative skin disorder hypothesis based on keloid findings. Int Wound J. 2014;11(5):517–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J. Hypertrophic burn scars: analysis of variables. J Trauma. 1983;23(10):895–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Lewis WH, Sun KK. Hypertrophic scar: a genetic hypothesis. Burns. 1990;16(3):176–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids:pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1–2):113–25.Google Scholar
  6. 6.
    Louw L. Keloids in rural black South Africans. Part 1: general overview and essential fatty acid hypotheses for keloid formation and prevention. Prostaglandins Leukot Essent Fatty Acids. 2000;63(5):237–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004;122(5):1126–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Ogawa R. Keloid and hypertrophic scarring may result from a mechanoreceptor or mechanosensitive nociceptor disorder. Med Hypotheses. 2008;71(4):493–500.CrossRefPubMedGoogle Scholar
  9. 9.
    Fong EP, Bay BH. Keloids – the sebum hypothesis revisited. Med Hypotheses. 2002;58(4):264–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Akaishi S, Ogawa R, Hyakusoku H. Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses. 2008;71(1):32–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Syed F, Bagabir RA, Paus R, Bayat A. Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage. Lab Investig. 2013;93(8):946–60.CrossRefPubMedGoogle Scholar
  12. 12.
    Juckett G, Hartman-Adams H. Management of keloids and hypertrophic scars. Am Fam Physician. 2009;80(3):253–60.PubMedGoogle Scholar
  13. 13.
    Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, Mustoe TA. The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201(3):391–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci. 2003;44(8):3394–401.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang YW, Liou NH, Cherng JH, Chang SJ, Ma KH, Fu E, Liu JC, Dai NT. siRNA-targeting transforming growth factor-β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue. J Invest Dermatol. 2014;134(7):2016–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu W, Chua C, Wu X, Wang D, Ying D, Cui L, Cao Y. Inhibiting scar formation in rat wounds by adenovirus-mediated overexpression of truncated TGF-beta receptor II. Plast Reconstr Surg. 2005;115(3):860–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu W, Cao Y, Longaker MT. Gene therapy of scarring: a lesson learned from fetal scarless wound healing. Yonsei Med J. 2001;42(6):634–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Eriksson E. Gene transfer in wound healing. Adv Skin Wound Care. 2000;13(2 Suppl):20–2.PubMedGoogle Scholar
  19. 19.
    Mulligan RC. The basic science of gene therapy. Science. 1993;260(5110):926–32.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meuli M, Liu Y, Liggitt D, Kashani-Sabet M, Knauer S, Meuli-Simmen C, Harrison MR, Adzick NS, Heath TD, Debs RJ. Efficient gene expression in skin wound sites following local plasmid injection. J Invest Dermatol. 2001;116(1):131–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang CH, Shen SC, Lee JC, Wu PC, Hsueh SF, Lu CY, Meng CT, Hong HS, Yang LC. Seeing the gene therapy: application of gene gun technique to transfect and decolour pigmented rat skin with human agouti signalling protein cDNA. Gene Ther. 2004;11(13):1033–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Davidson JM, Eming SA, Dasgupta J. Particle-mediated gene therapy of wounds. Methods Mol Med. 2003;78:433–52.PubMedGoogle Scholar
  23. 23.
    Andree C, Swain WF, Page CP, Macklin MD, Slama J, Hatzis D, Eriksson E. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci U S A. 1994;91(25):12188–92.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abe A, Furumoto H, Yoshida K, Kato T, Saijo Y, Irahara M. Gene gun-mediated skin transfection with FL gene suppresses the growth of murine fibrosarcoma. J Med Investig. 2011;58(1-2):39–45.CrossRefGoogle Scholar
  25. 25.
    Eriksson E, Yao F, Svensjö T, Winkler T, Slama J, Macklin MD, Andree C, McGregor M, Hinshaw V, Swain WF. In vivo gene transfer to skin and wound by microseeding. J Surg Res. 1998;78(2):85–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Eming SA, Krieg T, Davidson JM. Gene therapy and wound healing. Clin Dermatol. 2007;25(1):79–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yi Y, Noh MJ, Lee KH. Current advances in retroviral gene therapy. Curr Gene Ther. 2011;11(3):218–28.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther. 2005;5(1):25–35.Google Scholar
  29. 29.
    Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Babalola O, Mamalis A, Lev-Tov H, Jagdeo J. The role of microRNAs in skin fibrosis. Arch Dermatol Res. 2013;305(9):763–76.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, Zhu Z, Mo Z, Wu C, Chen X. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 2012;103(6):1058–64.CrossRefPubMedGoogle Scholar
  32. 32.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu Z, Lu CL, Cui LP, Hu YL, Yu Q, Jiang Y, Ma T, Jiao DK, Wang D, Jia CY. MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 2012;304(3):195–202.CrossRefPubMedGoogle Scholar
  34. 34.
    Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther. 2010;125(1):92–104.CrossRefPubMedGoogle Scholar
  35. 35.
    Xia K, Liang D, Tang A, Feng Y, Zhang J, Pan Q, Long Z, Dai H, Cai F, Wu L, Zhao S, Chen Z, Xia J. A novel fusion suicide gene yeast CDglyTK plays a role in radio-gene therapy of nasopharyngeal carcinoma. Cancer Gene Ther. 2004;11(12):790–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Xu B, Liu ZZ, Zhu GY, Yang JF, Zhao JP, Wang JC, Cai JL. Efficacy of recombinant adenovirus-mediated double suicide gene therapy in human keloid fibroblasts. Clin Exp Dermatol. 2008;33(3):322–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Sayah DN, Soo C, Shaw WW, Watson J, Messadi D, Longaker MT, Zhang X, Ting K. Downregulation of apoptosis-related genes in keloid tissues. J Surg Res. 1999;87(2):209–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Yuan Y, Peng G, Kang X, Liu Y, Dai J, Wu H. Effects of lentiviral vector-mediated TRADD expression on the inhibition of hypertrophic scar formation. Exp Biol Med (Maywood). 2014;239(12):1557–66.CrossRefGoogle Scholar
  39. 39.
    Liu Y, Yang D, Xiao Z, Zhang M. miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthet Plast Surg. 2012;36(1):193–201.CrossRefGoogle Scholar
  40. 40.
    Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta. 2010;411(11–12):846–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014;134(4):561e–73e.CrossRefPubMedGoogle Scholar
  42. 42.
    Cheng J, Wang Y, Wang D, Wu Y. Identification of collagen 1 as a post-transcriptional target of miR-29b in skin fibroblasts: therapeutic implication for scar reduction. Am J Med Sci. 2013;346(2):98–103.CrossRefPubMedGoogle Scholar
  43. 43.
    Tuan TL, Hwu P, Ho W, Yiu P, Chang R, Wysocki A, Benya PD. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor-1 produces elevated collagen accumulation in normal and keloid fibroblasts. Am J Pathol. 2008;173(5):1311–25.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol Med. 2007;13(2):45–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Koide T, Asada S, Takahara Y, Nishikawa Y, Nagata K, Kitagawa K. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation. J Biol Chem. 2006;281(6):3432–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen J, Cen Y. Detection of expression of heat shock protein 47 mRNA in pathological scar tissue by using real-time fluorescent quantitative RT-PCR. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005;19(8):613–6.PubMedGoogle Scholar
  47. 47.
    Chen JJ, Zhao S, Cen Y, Liu XX, Yu R, Wu DM. Effect of heat shock protein 47 on collagen accumulation in keloid fibroblast cells. Br J Dermatol. 2007;156(6):1188–95.CrossRefPubMedGoogle Scholar
  48. 48.
    Chen JJ, Jin PS, Zhao S, Cen Y, Liu Y, Xu XW, Duan WQ, Wang HS. Effect of heat shock protein 47 on collagen synthesis of keloid in vivo. ANZ J Surg. 2011;81(6):425–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Wang Z, Li L. Adenovirus-mediated RNA interference against collagen-specific molecular chaperone 47-KDa heat shock protein suppresses scar formation on mouse wounds. Cell Biol Int. 2008;32(5):484–93.CrossRefPubMedGoogle Scholar
  50. 50.
    Nakamura N, Hart DA, Boorman RS, Kaneda Y, Shrive NG, Marchuk LL, Shino K, Ochi T, Frank CB. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res. 2000;18(4):517–23.CrossRefPubMedGoogle Scholar
  51. 51.
    Takahashi T, Cho HI, Kublin CL, Cintron C. Keratan sulfate and dermatan sulfate proteoglycans associate with type VI collagen in fetal rabbit cornea. J Histochem Cytochem. 1993;41(10):1447–57.CrossRefPubMedGoogle Scholar
  52. 52.
    Schmidt G, Robenek H, Harrach B, Glössl J, Nolte V, Hörmann H, Richter H, Kresse H. Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin. J Cell Biol. 1987;104(6):1683–91.CrossRefPubMedGoogle Scholar
  53. 53.
    Welch MP, Odland GF, Clark RA. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol. 1990;110(1):133–45.CrossRefPubMedGoogle Scholar
  54. 54.
    Dzau VJ, Mann MJ, Morishita R, Kaneda Y. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci U S A. 1996;93(21):11421–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kaneda Y, Morishita R, Tomita N. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. J Mol Med (Berl). 1995;73(6):289–97.CrossRefGoogle Scholar
  56. 56.
    Dohi T, Miyake K, Aoki M, Ogawa R, Akaishi S, Shimada T, Okada T, Hyakusoku H. Tissue inhibitor of metalloproteinase-2 suppresses collagen synthesis in cultured keloid fibroblasts. Plast Reconstr Surg Glob Open. 2015;3(9):e520.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Aoki M, Miyake K, Ogawa R, Dohi T, Akaishi S, Hyakusoku H, Shimada T. siRNA knockdown of tissue inhibitor of metalloproteinase-1 in keloid fibroblasts leads to degradation of collagen type I. J Invest Dermatol. 2014;134(3):818–26.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee WJ, Ahn HM, Roh H, Na Y, Choi IK, Lee JH, Kim YO, Lew DH, Yun CO. Decorin-expressing adenovirus decreases collagen synthesis and upregulates MMP expression in keloid fibroblasts and keloid spheroids. Exp Dermatol. 2015;24(8):591–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Li Y, Kilani RT, Rahmani-Neishaboor E, Jalili RB, Ghahary A. Kynurenine increases matrix metalloproteinase-1 and -3 expression in cultured dermal fibroblasts and improves scarring in vivo. J Invest Dermatol. 2014;134(3):643–50.CrossRefPubMedGoogle Scholar
  60. 60.
    Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999;1(5):260–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol. 2004;85(2):47–64.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Massagué J, Attisano L, Wrana JL. The TGF-beta family and its composite receptors. Trends Cell Biol. 1994;4(5):172–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–54.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Waddington SN, Crossley R, Sheard V, Howe SJ, Buckley SM, Coughlan L, Gilham DE, Hawkins RE, McKay TR. Gene delivery of a mutant TGFβ3 reduces markers of scar tissue formation after cutaneous wounding. Mol Ther. 2010;18(12):2104–11.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tan WQ, Gao ZJ, Xu JH, Yao HP. Inhibiting scar formation in vitro and in vivo by adenovirus-mediated mutant Smad4: a preliminary report. Exp Dermatol. 2011;20(2):119–24.CrossRefPubMedGoogle Scholar
  66. 66.
    Chen R, Zhang Z, Xue Z, Wang L, Fu M, Lu Y, Bai L, Zhang D, Fan Z. Focal adhesion kinase (FAK) siRNA inhibits human hypertrophic scar by suppressing integrin α, TGF-β and α-SMA. Cell Biol Int. 2014;38(7):803–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Ha X, Yuan B, Li Y, Lao M, Wu Z. Gene therapy for pathological scar with hepatocyte growth factor mediated by recombinant adenovirus vector. Sci China C Life Sci. 2003;46(3):320–7.PubMedGoogle Scholar
  68. 68.
    Sisco M, Kryger ZB, O'Shaughnessy KD, Kim PS, Schultz GS, Ding XZ, Roy NK, Dean NM, Mustoe TA. Antisense inhibition of connective tissue growth factor (CTGF/CCN2) mRNA limits hypertrophic scarring without affecting wound healing in vivo. Wound Repair Regen. 2008;16(5):661–73.CrossRefPubMedGoogle Scholar
  69. 69.
    Chen X, Scapa J, Liu D, Godbey W. Cancer-specific promoters for expression-targeted gene therapy: ran, brms1, and mcm5. J Gene Med. 2016;18(7):89–101. Scholar
  70. 70.
    Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther. 2016;23(8–9):680–9. Scholar
  71. 71.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chenyu Huang
    • 1
  • Longwei Liu
    • 2
  • Zhifeng You
    • 2
  • Yanan Du
    • 2
  • Rei Ogawa
    • 3
    Email author
  1. 1.Department of DermatologyBeijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua UniversityBeijingChina
  2. 2.Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
  3. 3.Department of Plastic, Reconstructive and Aesthetic SurgeryNippon Medical SchoolTokyoJapan

Personalised recommendations