Advertisement

Neuroimaging in Ataxias

  • C. C. Piccinin
  • A. D’Abreu
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Primary ataxias are a heterogenic group of disorders mostly characterized by progressive incoordination of gait, speech, and eye movement. The mode of inheritance is diverse and authors use it to facilitate classification. Spinocerebellar ataxia (SCA) refers to autosomal dominant forms in which SCA3 (Machado-Joseph disease) is the most common followed by SCA1, SCA2, and SCA6. Recessive ataxias as Friedrich ataxia are also relatively prevalent, while x-linked and mitochondrial disorders are less frequent forms. Despite each type of ataxia has its own peculiarities, most of the symptoms overlap among them, making the diagnosis difficult when considering only the clinical picture. In this context, neuroimaging has become a valuable tool to help the diagnosis but also to better understand the affected brain areas and the pathophysiology of these conditions. Techniques as voxel-based morphometry, diffusion tensor imaging, and surface-based analyses have brought to light the structural differences between the ataxic patients and controls and also helped to differentiate the diagnosis. Functional MRI and spectroscopy have detected changes in functionality and in chemical ratios. Here, we describe the most promising neuroimaging methods that were used to evaluate ataxias and also revise and report the results of the main studies published so far.

Keywords

Neuroimaging Ataxia VBM DTI FreeSurfer Magnetic resonance Spectroscopy Cerebellum 

References

  1. 1.
    Baldarçara L, Currie S, Hadjivassiliou M et al (2015) Consensus paper: radiological biomarkers of cerebellar diseases. Cerebellum 14:175–196.  https://doi.org/10.1007/s12311-014-0610-3CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ashburner JFK (2000) Voxel-based morphometry--the methods. NeuroImage 11:805–821CrossRefPubMedGoogle Scholar
  3. 3.
    Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
    Lee MH, Smyser CD, Shimony JS (2014) Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 34:1866–1872.  https://doi.org/10.3174/ajnr.A3263.RestingCrossRefGoogle Scholar
  6. 6.
    Viau M, Boulanger Y (2004) Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat Disord 10:335–351.  https://doi.org/10.1016/j.parkreldis.2004.02.006CrossRefPubMedGoogle Scholar
  7. 7.
    Konaka K, Kaido M, Okuda Y et al (2000) Proton magnetic resonance spectroscopy of a patient with Gerstmann-Straussler-Scheinker disease. Neuroradiology 42:662–665CrossRefPubMedGoogle Scholar
  8. 8.
    Mascalchi M, Vella A (2011) Magnetic resonance and nuclear medicine imaging in ataxias. Handb Clin Neurol 103:85–110.  https://doi.org/10.1016/B978-0-444-51892-7.00004-8CrossRefGoogle Scholar
  9. 9.
    Prakash N, Hageman N, Hua X et al (2009) Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. NeuroImage 47:T72–T81.  https://doi.org/10.1016/j.neuroimage.2009.05.013CrossRefPubMedGoogle Scholar
  10. 10.
    Wilkinson ID, Hadjivassiliou M, Dickson JM et al (2005) Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry 76:1011–1013.  https://doi.org/10.1136/jnnp.2004.049809CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Della Nave R, Ginestroni A, Tessa C et al (2008b) Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage 40:19–25.  https://doi.org/10.1016/j.neuroimage.2007.11.050CrossRefPubMedGoogle Scholar
  12. 12.
    Goel G, Pal PK, Ravishankar S et al (2011) Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord 17:521–527.  https://doi.org/10.1016/j.parkreldis.2011.04.008CrossRefPubMedGoogle Scholar
  13. 13.
    Della NR, Ginestroni A, Tessa C et al (2008) Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. NeuroImage 43:10–19.  https://doi.org/10.1016/j.neuroimage.2008.06.036CrossRefGoogle Scholar
  14. 14.
    Ginestroni A, Della Nave R, Tessa C et al (2008) Brain structural damage in spinocerebellar ataxia type 1 : a VBM study. J Neurol 255:1153–1158.  https://doi.org/10.1007/s00415-008-0860-4CrossRefPubMedGoogle Scholar
  15. 15.
    Reetz K, Costa AS, Mirzazade S et al (2013) Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 136:905–917.  https://doi.org/10.1093/brain/aws369CrossRefPubMedGoogle Scholar
  16. 16.
    Brenneis C, Bösch S, Schocke M et al (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802CrossRefPubMedGoogle Scholar
  17. 17.
    Bird T (2016) Hereditary Ataxia overview. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews®. University of Washington, SeattleGoogle Scholar
  18. 18.
    D’Abreu A, França MC, Yasuda CL et al (2012) Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 22:285–291.  https://doi.org/10.1111/j.1552-6569.2011.00614.xCrossRefPubMedGoogle Scholar
  19. 19.
    Guimarães RP, D’Abreu A, Yasuda CL et al (2013) A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov Disord 28:1125–1132.  https://doi.org/10.1002/mds.25451CrossRefPubMedGoogle Scholar
  20. 20.
    Kang JS, Klein JC, Baudrexel S et al (2014) White matter damage is related to ataxia severity in SCA3. J Neurol 261:291–299.  https://doi.org/10.1007/s00415-013-7186-6CrossRefPubMedGoogle Scholar
  21. 21.
    Lopes TM, D’Abreu A, França MC et al (2013) Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol 260:2370–2379.  https://doi.org/10.1007/s00415-013-6998-8CrossRefPubMedGoogle Scholar
  22. 22.
    Lukas C, Schöls L, Bellenberg B et al (2006) Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 408:230–235.  https://doi.org/10.1016/j.neulet.2006.09.007CrossRefPubMedGoogle Scholar
  23. 23.
    Eichler L, Bellenberg B, Hahn HK et al (2011) Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. Am J Neuroradiol 32:890–897.  https://doi.org/10.3174/ajnr.A2387CrossRefPubMedGoogle Scholar
  24. 24.
    Bang OY, Lee PH, Kim SY et al (2004) Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 75:1452–1456.  https://doi.org/10.1136/jnnp.2003.029819CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alcauter S, Barrios FA, Díaz R, Fernández-Ruiz J (2011) Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. NeuroImage 55:1–7.  https://doi.org/10.1016/j.neuroimage.2010.12.014CrossRefPubMedGoogle Scholar
  26. 26.
    Lasek K, Lencer R, Gaser C et al (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2352.  https://doi.org/10.1093/brain/awl148CrossRefPubMedGoogle Scholar
  27. 27.
    Reetz K, Kleinman A, Klein C et al (2011) CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS One.  https://doi.org/10.1371/journal.pone.0015125
  28. 28.
    Reetz K, Lencer R, Hagenah JM et al (2010) Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum 9:210–217.  https://doi.org/10.1007/s12311-009-0150-4CrossRefPubMedGoogle Scholar
  29. 29.
    Della Nave R, Ginestroni A, Giannelli M et al (2008a) Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 79:82–85.  https://doi.org/10.1136/jnnp.2007.124297CrossRefPubMedGoogle Scholar
  30. 30.
    França MC, D’Abreu A, Yasuda CL et al (2009) A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol 256:1114–1120.  https://doi.org/10.1007/s00415-009-5079-5CrossRefPubMedGoogle Scholar
  31. 31.
    Santner W, Schocke M, Boesch S et al (2014) A longitudinal VBM study monitoring treatment with erythropoietin in patients with Friedreich ataxia. Acta Radiol short Rep 3:2047981614531573.  https://doi.org/10.1177/2047981614531573CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hashimoto RI, Javan AK, Tassone F et al (2011b) A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain 134:863–878.  https://doi.org/10.1093/brain/awq368CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guerrini L, Lolli F, Ginestroni A et al (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127:1785–1795.  https://doi.org/10.1093/brain/awh201CrossRefPubMedGoogle Scholar
  34. 34.
    Mandelli ML, De Simone T, Minati L et al (2007) Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. Am J Neuroradiol 28:1996–2000.  https://doi.org/10.3174/ajnr.A0716CrossRefPubMedGoogle Scholar
  35. 35.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024CrossRefPubMedGoogle Scholar
  36. 36.
    Hernandez-Castillo CR, Galvez V, Mercadillo R et al (2015) Extensive white matter alterations and its correlations with ataxia severity in SCA 2 patients. PLoS One 10:1–10.  https://doi.org/10.1371/journal.pone.0135449CrossRefGoogle Scholar
  37. 37.
    Karuta S, Raskin S, de Carvalho NA et al (2015) Diffusion tensor imaging and tract-based spatial statistics analysis in Friedreich’s ataxia patients. Parkinsonism Relat Disord 21:504–508.  https://doi.org/10.1016/j.parkreldis.2015.02.021CrossRefGoogle Scholar
  38. 38.
    Oguz KK, Haliloglu G, Temucin C et al (2013) Assessment of whole-brain white matter by DTI in autosomal recessive spastic ataxia of Charlevoix-Saguenay. Am J Neuroradiol 34:1952–1957.  https://doi.org/10.3174/ajnr.A3488CrossRefPubMedGoogle Scholar
  39. 39.
    Nucifora PGP, Verma R, Lee S, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367–384CrossRefPubMedGoogle Scholar
  40. 40.
    Sahama I, Sinclair K, Fiori S et al (2015) Motor pathway degeneration in young ataxia telangiectasia patients: a diffusion tractography study. Neuroimage Clin 9:206–215.  https://doi.org/10.1016/j.nicl.2015.08.007CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Winkler (2011) Cortical thickness or Grey matter. Neuroimage 53:1135–1146.  https://doi.org/10.1016/j.neuroimage.2009.12.028.CorticalCrossRefGoogle Scholar
  42. 42.
    de Rezende TJR, D’Abreu A, Guimarães RP et al (2015) Cerebral cortex involvement in Machado-Joseph disease. Eur J Neurol 22:277–283.  https://doi.org/10.1111/ene.12559CrossRefPubMedGoogle Scholar
  43. 43.
    Wang TY, Jao CW, Soong BW et al (2015) Change in the cortical complexity of spinocerebellar ataxia type 3 appears earlier than clinical symptoms. PLoS One 10:1–18.  https://doi.org/10.1371/journal.pone.0118828CrossRefGoogle Scholar
  44. 44.
    van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534.  https://doi.org/10.1016/j.euroneuro.2010.03.008CrossRefPubMedGoogle Scholar
  45. 45.
    Cocozza S, Saccà F, Cervo A et al (2015) Modifications of resting state networks in spinocerebellar ataxia type 2. Mov Disord 00:1–9.  https://doi.org/10.1002/mds.26284CrossRefGoogle Scholar
  46. 46.
    Wu T, Wang C, Wang J et al (2013) Preclinical and clinical neural network changes in SCA2 parkinsonism. Parkinsonism Relat Disord 19:158–164.  https://doi.org/10.1016/j.parkreldis.2012.08.011CrossRefPubMedGoogle Scholar
  47. 47.
    Hernandez-Castillo CR, Alcauter S, Galvez V et al (2013) Disruption of visual and motor connectivity in spinocerebellar Ataxia type 7. Mov Disord 28:1708–1716.  https://doi.org/10.1002/mds.25618CrossRefPubMedGoogle Scholar
  48. 48.
    Hernandez-Castillo CR, Galvez V, Morgado-Valle C, Fernandez-Ruiz J (2014) Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI. Cerebellum Ataxias 1:2.  https://doi.org/10.1186/2053-8871-1-2CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Reetz K, Dogan I, Rolfs A et al (2012) Investigating function and connectivity of morphometric findings - exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). NeuroImage 62:1354–1366.  https://doi.org/10.1016/j.neuroimage.2012.05.058CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jayakumar PN, Desai S, Pal PK et al (2008) Functional correlates of incoordination in patients with spinocerebellar ataxia 1: a preliminary fMRI study. J Clin Neurosci 15:269–277.  https://doi.org/10.1016/j.jocn.2007.06.021CrossRefPubMedGoogle Scholar
  51. 51.
    Stefanescu MR, Dohnalek M, Maderwald S et al (2015) Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 138:1182–1197.  https://doi.org/10.1093/brain/awv064CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Falcon M, Gomez C, Chen E et al (2015) Early cerebellar network shifting in spinocerebellar Ataxia type 6. Cereb Cortex.  https://doi.org/10.1093/cercor/bhv154
  53. 53.
    Ginestroni A, Diciotti S, Cecchi P et al (2012) Neurodegeneration in Friedreich’s ataxia is associated with a mixed activation pattern of the brain. A fMRI study. Hum Brain Mapp 33:1780–1791.  https://doi.org/10.1002/hbm.21319CrossRefPubMedGoogle Scholar
  54. 54.
    Akhlaghi H, Corben L, Georgiou-Karistianis N et al (2012) A functional MRI study of motor dysfunction in Friedreich’s ataxia. Brain Res 1471:138–154.  https://doi.org/10.1016/j.brainres.2012.06.035CrossRefPubMedGoogle Scholar
  55. 55.
    Georgiou-Karistianis N, Akhlaghi H, Corben LA et al (2012) Decreased functional brain activation in Friedreich ataxia using the Simon effect task. Brain Cogn 79:200–208.  https://doi.org/10.1016/j.bandc.2012.02.011CrossRefPubMedGoogle Scholar
  56. 56.
    Quarantelli M, Giardino G, Prinster A et al (2013) Steroid treatment in Ataxia-telangiectasia induces alterations of functional magnetic resonance imaging during prono-supination task. Eur J Paediatr Neurol 17:135–140.  https://doi.org/10.1016/j.ejpn.2012.06.002CrossRefPubMedGoogle Scholar
  57. 57.
    Hashimoto R, Backer K, Tassone F et al (2011a) An fMRI study of the prefrontal activity during the performance of a working memory task in premutation carriers of the fragile X mental retardation 1 gene with and without fragile X-associated tremor/ataxia syndrome (FXTAS). J Psychiatr Res 45:36–43.  https://doi.org/10.1016/j.jpsychires.2010.04.030CrossRefPubMedGoogle Scholar
  58. 58.
    Lirng JF, Wang PS, Chen HC et al (2012) Differences between spinocerebellar ataxias and multiple system atrophy-cerebellar type on proton magnetic resonance spectroscopy. PLoS One 7:1–7.  https://doi.org/10.1371/journal.pone.0047925CrossRefGoogle Scholar
  59. 59.
    Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252CrossRefPubMedGoogle Scholar
  60. 60.
    Oz G, Hutter D, Tkac I, Clark H (2010) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25:1253–1261. doi:  https://doi.org/10.1002/mds.23067.NEUROCHEMICAL
  61. 61.
    Boesch S, Schocke M, Bürk K et al (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 13:553–559CrossRefPubMedGoogle Scholar
  62. 62.
    Boesch S, Wolf C, Seppi K et al (2007) Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 25:564–569.  https://doi.org/10.1002/jmri.20846CrossRefPubMedGoogle Scholar
  63. 63.
    Chen HC, Lirng JF, Soong BW et al (2014) The merit of proton magnetic resonance spectroscopy in the longitudinal assessment of spinocerebellar ataxias and multiple system atrophy-cerebellar type. Cerebellum Ataxias 1:17.  https://doi.org/10.1186/s40673-014-0017-4CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang P-S, Chen H-C, Wu H-M et al (2012) Association between proton magnetic resonance spectroscopy measurements and CAG repeat number in patients with spinocerebellar ataxias 2, 3, or 6. PLoS One 7:e47479.  https://doi.org/10.1371/journal.pone.0047479CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Viau M, Marchand L, Bard C, Boulanger Y (2005) (1)H magnetic resonance spectroscopy of autosomal ataxias. Brain Res 1049:191–202.  https://doi.org/10.1016/j.brainres.2005.05.015CrossRefPubMedGoogle Scholar
  66. 66.
    D’Abreu A, França M, Appenzeller S et al (2009) Axonal dysfunction in the deep white matter in Machado-Joseph disease. J Neuroimaging 19:9–12.  https://doi.org/10.1111/j.1552-6569.2008.00260.xCrossRefPubMedGoogle Scholar
  67. 67.
    Oz G, Iltis I, Hutter D et al (2011) Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum 10:208–217.  https://doi.org/10.1007/s12311-010-0213-6CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Adanyeguh I, Henry P, Nguyen T et al (2015) In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov Disord 30:662–670.  https://doi.org/10.1002/mds.26181CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mascalchi M, Cosottini M, Lolli F et al (2002) Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223:371–378CrossRefPubMedGoogle Scholar
  70. 70.
    Iltis I, Hutter D, Bushara K et al (2010) (1)H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res 1358:200–210.  https://doi.org/10.1016/j.brainres.2010.08.030CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lin D, Crawford T, Lederman H, Barker P (2006) Proton MR spectroscopic imaging in ataxia-telangiectasia. Neuropediatrics 37:241–246.  https://doi.org/10.1055/s-2006-924722CrossRefPubMedGoogle Scholar
  72. 72.
    Wallis LI, Griffiths PD, Romanowski CA et al (2007) Proton spectroscopy and imaging at 3T in ataxia telangiectasia. AJNR Am J Neuroradiol 28:79–83Google Scholar
  73. 73.
    Ginestroni A, Guerrini L, Della Nave R et al (2007) Morphometry and 1H-MR spectroscopy of the brain stem and cerebellum in three patients with fragile X-associated tremor/ataxia syndrome. AJNR Am J Neuroradiol 28:486–488PubMedGoogle Scholar
  74. 74.
    Sarac H, Henigsberg N, Markeljević J et al (2011) Fragile X-premutation tremor/ataxia syndrome (FXTAS) in a young woman: clinical, genetics, MRI and 1H-MR spectroscopy correlates. Coll Antropol 35:327–332PubMedGoogle Scholar
  75. 75.
    Spacey S (2015) Episodic Ataxia type. In: Pagon R, Adam M, Ardinger H et al (eds) GeneReviews [Internet]. University of Washington, Seattle, p 2Google Scholar
  76. 76.
    Sappey-Marinier D, Vighetto A, Peyron R et al (1999) Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Ann Neurol 46:256–259CrossRefPubMedGoogle Scholar
  77. 77.
    Harno H, Heikkinen S, Kaunisto M et al (2005) Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology 64:542–544.  https://doi.org/10.1212/01.WNL.0000150589.26350.3DCrossRefPubMedGoogle Scholar
  78. 78.
    Blüml S, Philippart M, Schiffmann R et al (2003) Membrane phospholipids and high-energy metabolites in childhood ataxia with CNS hypomyelination. Neurology 61:648–654CrossRefPubMedGoogle Scholar
  79. 79.
    Tedeschi G, Schiffmann R, Barton N et al (1995) Proton magnetic resonance spectroscopic imaging in childhood ataxia with diffuse central nervous system hypomyelination. Neurology 45:1526–1532CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. C. Piccinin
    • 1
  • A. D’Abreu
    • 2
    • 3
  1. 1.Neuroimaging LaboratorySchool of Medical Sciences, University of CampinasCampinasBrazil
  2. 2.Neuroimaging LaboratorySchool of Medical Sciences, State University of CampinasCampinasBrazil
  3. 3.Neurology DepartmentSchool of Medical Sciences, State University of CampinasCampinasBrazil

Personalised recommendations