Advertisement

Structural and Functional Neuroimaging in Multiple Sclerosis: From Atrophy, Lesions to Global Network Disruption

  • Prejaas Tewarie
  • Menno Schoonheim
  • Arjan Hillebrand
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease that affects the central nervous system. There is a clinico-radiological paradox in MS: A discrepancy between clinical symptoms and the amount of focal brain lesions. In this chapter we explore how new sophisticated neuroimaging approaches could help elucidate the clinico-radiological paradox, as they quantify structural and functional pathology beyond focal MRI-visible white matter lesions. The observed triad of structural MS pathology (focal lesions, diffuse changes and brain atrophy) throughout the grey and white matter seems to induce highly complex functional network changes that are currently understudied. The current debate on beneficial and maladaptive functional changes remains ongoing. The high variability in all forms of structural and functional pathology in MS highlights the need for a more holistic, network-based approach to study the disease. Hopefully, such future studies could then provide the much-needed missing links essential to unravelling the clinico-radiological paradox.

Keywords

Multiple sclerosis Lesions Atrophy Normal appearing Connectivity Network MRI fMRI MEG DTI 

Abbreviations

BOLD

Blood-oxygenation level dependent

CIS

Clinically isolated syndrome

DTI

Diffusion tensor imaging

EAE

Experimental allergic encephalomyelitis

EE

Gelectroencephalogram

fMRI

Functional magnetic resonance

MAGNIMS

Magnetic resonance imaging in multiple sclerosis

MEG

Magnetoencephalography

MRI

Magnetic resonance imaging

MS

Multiple sclerosis

MST

Minimum spanning tree

MTI

Magnetisation transfer imaging

NMSS

National MS society

PASAT

Paced auditory serial addition test

PP

Primary progressive

RR

Relapsing remitting

SP

Secondary progressive

References

  1. 1.
    Kamm CP, Uitdehaag BM, Polman CH (2014) Multiple sclerosis: current knowledge and future outlook. Eur Neurol 72(3–4):132–141PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Alonso A, Hernán MA (2008) Temporal trends in the incidence of multiple sclerosis a systematic review. Neurology 71(2):129–135PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13(7):507–514PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ et al (2014) Defining the clinical course of multiple sclerosis the 2013 revisions. Neurology 83(3):278–286PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    La Mantia L, Vacchi L, Di Pietrantonj C, Ebers G, Rovaris M, Fredrikson S et al (2012) Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst Rev 1:CD005181PubMedPubMedCentralGoogle Scholar
  6. 6.
    Miller DH, Leary SM (2007) Primary-progressive multiple sclerosis. Lancet Neurol 6(10):903–912PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Filippini G, Del Giovane C, Vacchi L, D'Amico R, Di Pietrantonj C, Beecher D et al (2013) Immunomodulators and immunosuppressants for multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 6:CD008933Google Scholar
  8. 8.
    Tramacere I, Del Giovane C, Salanti G, D'Amico R, Filippini G. Immunomodulators and immunosuppressants for relapsing-remitting multiple sclerosis: a network meta-analysis. Cochrane Database Syst Rev 2015;9:CD011381.Google Scholar
  9. 9.
    Rolak LA. The history of MS; the basic facts. http://www.nationalmssociety.org. National Multiple Sclerosis Society; 2016
  10. 10.
    Ormerod IE, Miller DH, McDonald WI, du Boulay EP, Rudge P, Kendall BE et al (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 110(Pt 6):1579–1616PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Miller DH, Grossman RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121(Pt 1):3–24PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Neema M, Stankiewicz J, Arora A, Dandamudi VS, Batt CE, Guss ZD et al (2007) T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging 17(Suppl 1):16S–21SPubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Seewann A, Vrenken H, van der Valk P, Blezer EL, Knol DL, Castelijns JA et al (2009) Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch Neurol 66(5):601–609PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Grossman RI, Gonzalez-Scarano F, Atlas SW, Galetta S, Silberberg DH (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161(3):721–725PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50(5):1282–1288PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Grossman RI, Braffman BH, Brorson JR, Goldberg HI, Silberberg DH, Gonzalez-Scarano F (1988) Multiple sclerosis: serial study of gadolinium-enhanced MR imaging. Radiology 169(1):117–122PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    van Waesberghe JH, van Walderveen MA, Castelijns JA, Scheltens P, GJ L a N, Polman CH et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol 19(4):675–683PubMedPubMedCentralGoogle Scholar
  18. 18.
    van den Elskamp IJ, Boden B, Dattola V, Knol DL, Filippi M, Kappos L et al (2010) Cerebral atrophy as outcome measure in short-term phase 2 clinical trials in multiple sclerosis. Neuroradiology 52(10):875–881PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Filippi M, Horsfield MA, Tofts PS, Barkhof F, Thompson AJ, Miller DH (1995) Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. Brain 118(Pt 6):1601–1612PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Miller DH, Barkhof F, Nauta JJ (1993) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116(Pt 5):1077–1094PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L et al (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15(3):292–303PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gonzalez-Scarano F, Grossman RI, Galetta S, Atlas SW, Silberberg DH (1987) Multiple sclerosis disease activity correlates with gadolinium-enhanced magnetic resonance imaging. Ann Neurol 21(3):300–306PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F et al (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet 353(9157):964–969PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Truyen L, van Waesberghe JH, van Walderveen MA, van Oosten BW, Polman CH, Hommes OR et al (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47(6):1469–1476PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rovaris M, Agosta F, Sormani MP, Inglese M, Martinelli V, Comi G et al (2003) Conventional and magnetization transfer MRI predictors of clinical multiple sclerosis evolution: a medium-term follow-up study. Brain 126(Pt 10):2323–2332PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Barkhof F (1999) MRI in multiple sclerosis: correlation with expanded disability status scale (EDSS). Mult Scler 5(4):283–286PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Thompson AJ, Kermode AG, MacManus DG, Kendall BE, Kingsley DP, Moseley IF et al (1990) Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. BMJ 300(6725):631–634PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Montalban X (2005) Primary progressive multiple sclerosis. Curr Opin Neurol 18(3):261–266PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nijeholt GJ, van Walderveen MA, Castelijns JA, van Waesberghe JH, Polman C, Scheltens P et al (1998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121(Pt 4):687–697PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Khaleeli Z, Ciccarelli O, Manfredonia F, Barkhof F, Brochet B, Cercignani M et al (2008) Predicting progression in primary progressive multiple sclerosis: a 10-year multicenter study. Ann Neurol 63(6):790–793PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Camp SJ, Stevenson VL, Thompson AJ, Miller DH, Borras C, Auriacombe S et al (1999) Cognitive function in primary progressive and transitional progressive multiple sclerosis: a controlled study with MRI correlates. Brain 122(Pt 7):1341–1348PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Benedict RH, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R (2004) Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 61(2):226–230PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15(3):239–245PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Vellinga MM, Geurts JJ, Rostrup E, Uitdehaag BM, Polman CH, Barkhof F et al (2009) Clinical correlations of brain lesion distribution in multiple sclerosis. J Magn Reson Imaging 29(4):768–773PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hackmack K, Weygandt M, Wuerfel J, Pfueller CF, Bellmann-Strobl J, Paul F et al (2012) Can we overcome the ‘clinico-radiological paradox’ in multiple sclerosis? J Neurol 259(10):2151–2160PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kincses ZT, Ropele S, Jenkinson M, Khalil M, Petrovic K, Loitfelder M et al (2011) Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler 17(6):681–689PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bodini B, Battaglini M, De Stefano N, Khaleeli Z, Barkhof F, Chard D et al (2011) T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 82(1):72–77PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dalton CM, Bodini B, Samson RS, Battaglini M, Fisniku LK, Thompson AJ et al (2012) Brain lesion location and clinical status 20 years after a diagnosis of clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 18(3):322–328PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50(3):389–400PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T (1999) Cortical lesions in multiple sclerosis. Brain 122(Pt 1):17–26PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Filippi M, Preziosa P, Rocca MA (2014) Magnetic resonance outcome measures in multiple sclerosis trials: time to rethink? Curr Opin Neurol 27(3):290–299PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bo L, Geurts JJ, Mork SJ, van der Valk P (2006) Grey matter pathology in multiple sclerosis. Acta Neurol Scand Suppl 183:48–50PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Calabrese M, Rocca MA, Atzori M, Mattisi I, Bernardi V, Favaretto A et al (2009) Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72(15):1330–1336PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68(9):634–642PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA et al (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64(3):247–254PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Calabrese M, Rinaldi F, Grossi P, Gallo P (2011) Cortical pathology and cognitive impairment in multiple sclerosis. Expert Rev Neurother 11(3):425–432PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Rinaldi F, Calabrese M, Grossi P, Puthenparampil M, Perini P, Gallo P (2010) Cortical lesions and cognitive impairment in multiple sclerosis. Neurol Sci 31(Suppl 2):S235–S237PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14(3):302–317PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Roosendaal SD, Moraal B, Vrenken H, Castelijns JA, Pouwels PJ, Barkhof F et al (2008) In vivo MR imaging of hippocampal lesions in multiple sclerosis. J Magn Reson Imaging 27(4):726–731PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Calabrese M, Grossi P, Favaretto A, Romualdi C, Atzori M, Rinaldi F et al (2012) Cortical pathology in multiple sclerosis patients with epilepsy: a 3 year longitudinal study. J Neurol Neurosurg Psychiatry 83(1):49–54PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Uribe-San-Martin R, Ciampi-Diaz E, Suarez-Hernandez F, Vasquez-Torres M, Godoy-Fernandez J, Carcamo-Rodriguez C (2014) Prevalence of epilepsy in a cohort of patients with multiple sclerosis. Seizure 23(1):81–83PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16(3):147–158PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    van de Pavert SH, Muhlert N, Sethi V, Wheeler-Kingshott CA, Ridgway GR, Geurts JJ et al (2016) DIR-visible grey matter lesions and atrophy in multiple sclerosis: partners in crime? J Neurol Neurosurg Psychiatry 87(5):461–467PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bakshi R, Ariyaratana S, Benedict RH, Jacobs L (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58(5):742–748PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F (2005) Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol 26(3):572–577PubMedPubMedCentralGoogle Scholar
  60. 60.
    Geurts JJ, Blezer EL, Vrenken H, van der Toorn A, Castelijns JA, Polman CH et al (2008) Does high-field MR imaging improve cortical lesion detection in multiple sclerosis? J Neurol 255(2):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236(1):254–260PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Seewann A, Vrenken H, Kooi EJ, van der Valk P, Knol DL, Polman CH et al (2011) Imaging the tip of the iceberg: visualization of cortical lesions in multiple sclerosis. Mult Scler 17(10):1202–1210PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Seewann A, Kooi EJ, Roosendaal SD, Pouwels PJ, Wattjes MP, van der Valk P et al (2012) Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 78(5):302–308PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Geurts JJ, Roosendaal SD, Calabrese M, Ciccarelli O, Agosta F, Chard DT et al (2011) Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology 76(5):418–424PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    de Graaf WL, Kilsdonk ID, Lopez-Soriano A, Zwanenburg JJ, Visser F, Polman CH et al (2013) Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter. Eur Radiol 23(2):528–540PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kilsdonk ID, de Graaf WL, Soriano AL, Zwanenburg JJ, Visser F, Kuijer JP et al (2013) Multicontrast MR imaging at 7T in multiple sclerosis: highest lesion detection in cortical gray matter with 3D-FLAIR. AJNR Am J Neuroradiol 34(4):791–796PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kilsdonk ID, Jonkman LE, Klaver R, van Veluw SJ, Zwanenburg JJ, Kuijer JP et al (2016) Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain 8Google Scholar
  68. 68.
    McDonald WI (1974) Pathophysiology in multiple sclerosis. Brain 97(1):179–196PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Simon JH, Holtas SL, Schiffer RB, Rudick RA, Herndon RM, Kido DK et al (1986) Corpus callosum and subcallosal-periventricular lesions in multiple sclerosis: detection with MR. Radiology 160(2):363–367PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Losseff NA, Wang L, Lai HM, Yoo DS, Gawne-Cain ML, McDonald WI et al (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119(Pt 6):2009–2019PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Losseff NA, Webb SL, O'Riordan JI, Page R, Wang L, Barker GJ et al (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119(Pt 3):701–708PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lukas C, Knol DL, Sombekke MH, Bellenberg B, Hahn HK, Popescu V et al (2015) Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 86(4):410–418PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lukas C, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, Bendfeldt K et al (2013) Relevance of spinal cord abnormalities to clinical disability in multiple sclerosis: MR imaging findings in a large cohort of patients. Radiology 269(2):542–552PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Huber SJ, Paulson GW, Shuttleworth EC, Chakeres D, Clapp LE, Pakalnis A et al (1987) Magnetic resonance imaging correlates of dementia in multiple sclerosis. Arch Neurol 44(7):732–736PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Pozzilli C, Bastianello S, Padovani A, Passafiume D, Millefiorini E, Bozzao L et al (1991) Anterior corpus callosum atrophy and verbal fluency in multiple sclerosis. Cortex 27(3):441–445PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Pozzilli C, Fieschi C, Perani D, Paulesu E, Comi G, Bastianello S et al (1992) Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci 112(1–2):51–57PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Saindane AM, Ge Y, Udupa JK, Babb JS, Mannon LJ, Grossman RI (2000) The effect of gadolinium-enhancing lesions on whole brain atrophy in relapsing-remitting MS. Neurology 55(1):61–65PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pelletier J, Habib M, Lyon-Caen O, Salamon G, Poncet M, Khalil R (1993) Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50(10):1077–1082PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Eikelenboom MJ, Petzold A, Lazeron RH, Silber E, Sharief M, Thompson EJ et al (2003) Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 60(2):219–223PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Popescu V, Klaver R, Voorn P, Galis-de Graaf Y, Knol DL, Twisk JW et al (2015) What drives MRI-measured cortical atrophy in multiple sclerosis? Mult Scler 21(10):1280–1290PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Klaver R, Popescu V, Voorn P, Galis-de Graaf Y, van der Valk P, de Vries HE et al (2015) Neuronal and axonal loss in normal-appearing gray matter and subpial lesions in multiple sclerosis. J Neuropathol Exp Neurol 74(5):453–458PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ et al (2010) Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. NeuroImage 52(4):1261–1267PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Popescu V, Schoonheim MM, Versteeg A, Chaturvedi N, Jonker M, Xavier de Menezes R et al (2016) Grey matter atrophy in multiple sclerosis: clinical interpretation depends on choice of analysis method. PLoS One 11(1):e0143942PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Simon JH, Jacobs LD, Campion MK, Rudick RA, Cookfair DL, Herndon RM et al (1999) A longitudinal study of brain atrophy in relapsing multiple sclerosis. The multiple sclerosis collaborative research group (MSCRG). Neurology 53(1):139–148PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Barkhof FJ, Elton M, Lindeboom J, Tas MW, Schmidt WF, Hommes OR et al (1998) Functional correlates of callosal atrophy in relapsing-remitting multiple sclerosis patients. A preliminary MRI study. J Neurol 245(3):153–158PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Filippi M, Mastronardo G, Rocca MA, Pereira C, Comi G (1998) Quantitative volumetric analysis of brain magnetic resonance imaging from patients with multiple sclerosis. J Neurol Sci 158(2):148–153PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rovaris M, Bozzali M, Rodegher M, Tortorella C, Comi G, Filippi M (1999) Brain MRI correlates of magnetization transfer imaging metrics in patients with multiple sclerosis. J Neurol Sci 166(1):58–63PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Molyneux PD, Kappos L, Polman C, Pozzilli C, Barkhof F, Filippi M et al (2000) The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European study group on interferon beta-1b in secondary progressive multiple sclerosis. Brain 123(Pt 11):2256–2263PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ge Y, Grossman RI, Udupa JK, Wei L, Mannon LJ, Polansky M et al (2000) Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 214(3):665–670PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125(Pt 8):1676–1695PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sastre-Garriga J, Ingle GT, Chard DT, Cercignani M, Ramio-Torrenta L, Miller DH et al (2005) Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain 128(Pt 6):1454–1460PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP et al (2013) Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 84(10):1082–1091PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chard DT, Brex PA, Ciccarelli O, Griffin CM, Parker GJ, Dalton C et al (2003) The longitudinal relation between brain lesion load and atrophy in multiple sclerosis: a 14 year follow up study. J Neurol Neurosurg Psychiatry 74(11):1551–1554PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    van Munster CE, Jonkman LE, Weinstein HC, Uitdehaag BM, Geurts JJ (2015) Gray matter damage in multiple sclerosis: impact on clinical symptoms. Neuroscience 303:446–461PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Grassiot B, Desgranges B, Eustache F, Defer G (2009) Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review. J Neurol 256(9):1397–1412PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ge Y, Grossman RI, Udupa JK, Babb JS, Nyul LG, Kolson DL (2001) Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology 220(3):606–610PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125(Pt 2):327–337PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hardmeier M, Wagenpfeil S, Freitag P, Fisher E, Rudick RA, Kooijmans-Coutinho M et al (2003) Atrophy is detectable within a 3-month period in untreated patients with active relapsing remitting multiple sclerosis. Arch Neurol 60(12):1736–1739PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Jacobsen C, Hagemeier J, Myhr KM, Nyland H, Lode K, Bergsland N et al (2014) Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry 85(10):1109–1115PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lin X, Blumhardt LD, Constantinescu CS (2003) The relationship of brain and cervical cord volume to disability in clinical subtypes of multiple sclerosis: a three-dimensional MRI study. Acta Neurol Scand 108(6):401–406PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fisher E, Lee JC, Nakamura K, Rudick RA (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64(3):255–265PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Popescu V, Battaglini M, Hoogstrate WS, Verfaillie SC, Sluimer IC, van Schijndel RA et al (2012) Optimizing parameter choice for FSL-brain extraction tool (BET) on 3D T1 images in multiple sclerosis. NeuroImage 61(4):1484–1494PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Vrenken H, Jenkinson M, Horsfield MA, Battaglini M, van Schijndel RA, Rostrup E et al (2013) Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 260(10):2458–2471PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell'Oglio E et al (2012) The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. AJNR Am J Neuroradiol 33(8):1579–1585PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Popescu V, Ran NC, Barkhof F, Chard DT, Wheeler-Kingshott CA, Vrenken H (2014) Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Neuroimage Clin 4:366–373PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA (2010) Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 32(1):223–228PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S et al (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75(1):98–107PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Bendfeldt K, Blumhagen JO, Egger H, Loetscher P, Denier N, Kuster P et al (2010) Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis. Hum Brain Mapp 31(10):1542–1555PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Steenwijk MD, Daams M, Pouwels PJ, Balk LJ, Tewarie PK, Killestein J et al (2014) What explains gray matter atrophy in long-standing multiple sclerosis? Radiology 272(3):832–842PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O (2009) Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp 30(9):2852–2861PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Tillema JM, Hulst HE, Rocca MA, Vrenken H, Steenwijk MD, Damjanovic D et al (2016) Regional cortical thinning in multiple sclerosis and its relation with cognitive impairment: a multicenter study. Mult Scler 22(7):901–909PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Achiron A, Chapman J, Tal S, Bercovich E, Gil H, Achiron A (2013) Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis. Brain Struct Funct 218(4):943–950PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC (2007) Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. NeuroImage 34(2):509–517PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Geisseler O, Pflugshaupt T, Bezzola L, Reuter K, Weller D, Schuknecht B et al (2016) Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients’ fluency performance in a lateralised manner. Neuroimage Clin 10:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Nygaard GO, Walhovd KB, Sowa P, Chepkoech JL, Bjornerud A, Due-Tonnessen P et al (2015) Cortical thickness and surface area relate to specific symptoms in early relapsing-remitting multiple sclerosis. Mult Scler 21(4):402–414PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sailer M, Fischl B, Salat D, Tempelmann C, Schonfeld MA, Busa E et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126(Pt 8):1734–1744PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Steenwijk MD, Daams M, Pouwels PJ, JB L, Tewarie PK, Geurts JJ et al (2015) Unraveling the relationship between regional gray matter atrophy and pathology in connected white matter tracts in long-standing multiple sclerosis. Hum Brain Mapp 36(5):1796–1807PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Bergsland N, Lagana MM, Tavazzi E, Caffini M, Tortorella P, Baglio F et al (2015) Corticospinal tract integrity is related to primary motor cortex thinning in relapsing-remitting multiple sclerosis. Mult Scler 21(14):1771–1780PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Parisi L, Rocca MA, Mattioli F, Riccitelli GC, Capra R, Stampatori C et al (2014) Patterns of regional gray matter and white matter atrophy in cortical multiple sclerosis. J Neurol 261(9):1715–1725PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ et al (2016) Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139(Pt 1):115–126PubMedCrossRefGoogle Scholar
  121. 121.
    Prinster A, Quarantelli M, Orefice G, Lanzillo R, Brunetti A, Mollica C et al (2006) Grey matter loss in relapsing-remitting multiple sclerosis: a voxel-based morphometry study. NeuroImage 29(3):859–867PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S et al (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81(6):690–695PubMedCrossRefGoogle Scholar
  123. 123.
    Cappellani R, Bergsland N, Weinstock-Guttman B, Kennedy C, Carl E, Ramasamy DP et al (2014) Subcortical deep gray matter pathology in patients with multiple sclerosis is associated with white matter lesion burden and atrophy but not with cortical atrophy: a diffusion tensor MRI study. AJNR Am J Neuroradiol 35(5):912–919PubMedCrossRefGoogle Scholar
  124. 124.
    Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B et al (2007) Thalamic atrophy and cognition in multiple sclerosis. Neurology 69(12):1213–1223PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Benedict RH, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R (2009) Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 80(2):201–206PubMedCrossRefGoogle Scholar
  126. 126.
    Riccitelli G, Rocca MA, Pagani E, Rodegher ME, Rossi P, Falini A et al (2011) Cognitive impairment in multiple sclerosis is associated to different patterns of gray matter atrophy according to clinical phenotype. Hum Brain Mapp 32(10):1535–1543PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L et al (2012) Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 79(17):1754–1761PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Batista S, Zivadinov R, Hoogs M, Bergsland N, Heininen-Brown M, Dwyer MG et al (2012) Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 259(1):139–146PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B et al (2013) Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler 19(11):1478–1484PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Schoonheim MM, Hulst HE, Brandt RB, Strik M, Wink AM, Uitdehaag BM et al (2015) Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84(8):776–783PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Benedict RH, Zivadinov R (2011) Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 7(6):332–342PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA et al (2013) The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80(2):210–219PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60(12):1949–1954PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mesaros S, Rocca MA, Absinta M, Ghezzi A, Milani N, Moiola L et al (2008) Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology 70(13 Pt 2):1107–1112PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Zivadinov R, Havrdova E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z et al (2013) Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 268(3):831–841PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Shiee N, Bazin PL, Zackowski KM, Farrell SK, Harrison DM, Newsome SD et al (2012) Revisiting brain atrophy and its relationship to disability in multiple sclerosis. PLoS One 7(5):e37049PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L et al (2014) Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry 85(8):851–858PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Vrenken H, Geurts JJ (2007) Gray and normal-appearing white matter in multiple sclerosis: an MRI perspective. Expert Rev Neurother 7(3):271–279PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47(3):391–395PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Werring DJ, Clark CA, Barker GJ, Thompson AJ, Miller DH (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52(8):1626–1632PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Oreja-Guevara C, Rovaris M, Iannucci G, Valsasina P, Caputo D, Cavarretta R et al (2005) Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study. Arch Neurol 62(4):578–584PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Rovaris M, Judica E, Gallo A, Benedetti B, Sormani MP, Caputo D et al (2006) Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years. Brain 129(Pt 10):2628–2634PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Vrenken H, Pouwels PJ, Geurts JJ, Knol DL, Polman CH, Barkhof F et al (2006) Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration. J Magn Reson Imaging 23(5):628–636PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    van Walderveen MA, van Schijndel RA, Pouwels PJ, Polman CH, Barkhof F (2003) Multislice T1 relaxation time measurements in the brain using IR-EPI: reproducibility, normal values, and histogram analysis in patients with multiple sclerosis. J Magn Reson Imaging 18(6):656–664PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Vrenken H, Geurts JJ, Knol DL, van Dijk LN, Dattola V, Jasperse B et al (2006) Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 240(3):811–820PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Steenwijk MD, Vrenken H, Jonkman LE, Daams M, Geurts JJ, Barkhof F et al (2015) High-resolution T1-relaxation time mapping displays subtle, clinically relevant, gray matter damage in long-standing multiple sclerosis. Mult Scler 12Google Scholar
  147. 147.
    Matthews PM, Arnold DL (2001) Magnetic resonance imaging of multiple sclerosis: new insights linking pathology to clinical evolution. Curr Opin Neurol 14(3):279–287PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58(1):65–70PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    De Stefano N, Iannucci G, Sormani MP, Guidi L, Bartolozzi ML, Comi G et al (2002) MR correlates of cerebral atrophy in patients with multiple sclerosis. J Neurol 249(8):1072–1077PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Inglese M, Li BS, Rusinek H, Babb JS, Grossman RI, Gonen O (2003) Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 50(1):190–195PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Rovaris M, Bozzali M, Santuccio G, Ghezzi A, Caputo D, Montanari E et al (2001) In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124(Pt 12):2540–2549PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Traboulsee A, Dehmeshki J, Peters KR, Griffin CM, Brex PA, Silver N et al (2003) Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler 9(6):566–573PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Deloire MS, Salort E, Bonnet M, Arimone Y, Boudineau M, Amieva H et al (2005) Cognitive impairment as marker of diffuse brain abnormalities in early relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 76(4):519–526PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Khaleeli Z, Sastre-Garriga J, Ciccarelli O, Miller DH, Thompson AJ (2007) Magnetisation transfer ratio in the normal appearing white matter predicts progression of disability over 1 year in early primary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 78(10):1076–1082PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Vrenken H, Pouwels PJ, Ropele S, Knol DL, Geurts JJ, Polman CH et al (2007) Magnetization transfer ratio measurement in multiple sclerosis normal-appearing brain tissue: limited differences with controls but relationships with clinical and MR measures of disease. Mult Scler 13(6):708–716PubMedCrossRefGoogle Scholar
  156. 156.
    Vrenken H, Geurts JJ, Knol DL, Polman CH, Castelijns JA, Pouwels PJ et al (2006) Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis. AJNR Am J Neuroradiol 27(9):2005–2011PubMedPubMedCentralGoogle Scholar
  157. 157.
    Enzinger C, Barkhof F, Ciccarelli O, Filippi M, Kappos L, Rocca MA et al (2015) Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 11(12):676–686PubMedCrossRefGoogle Scholar
  158. 158.
    Kacar K, Rocca MA, Copetti M, Sala S, Mesaros S, Stosic Opincal T et al (2011) Overcoming the clinical-MR imaging paradox of multiple sclerosis: MR imaging data assessed with a random forest approach. AJNR Am J Neuroradiol 32(11):2098–2102PubMedCrossRefGoogle Scholar
  159. 159.
    Fabiano AJ, Sharma J, Weinstock-Guttman B, Munschauer FE, 3rd, Benedict RH, Zivadinov R, et al. Thalamic involvement in multiple sclerosis: a diffusion-weighted magnetic resonance imaging study. J Neuroimaging 2003;13(4):307–314.PubMedCrossRefGoogle Scholar
  160. 160.
    Deppe M, Kramer J, Tenberge JG, Marinell J, Schwindt W, Deppe K et al (2016) Early silent microstructural degeneration and atrophy of the thalamocortical network in multiple sclerosis. Hum Brain Mapp 37(5):1866–1879PubMedCrossRefGoogle Scholar
  161. 161.
    Mesaros S, Rocca MA, Pagani E, Sormani MP, Petrolini M, Comi G et al (2011) Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 32(6):1016–1020PubMedCrossRefGoogle Scholar
  162. 162.
    Hannoun S, Durand-Dubief F, Confavreux C, Ibarrola D, Streichenberger N, Cotton F et al (2012) Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol 33(7):1363–1368PubMedCrossRefGoogle Scholar
  163. 163.
    Schoonheim MM, Vigeveno RM, Rueda Lopes FC, Pouwels PJ, Polman CH, Barkhof F et al (2014) Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum Brain Mapp 35(5):2348–2358PubMedCrossRefGoogle Scholar
  164. 164.
    Hulst HE, Steenwijk MD, Versteeg A, Pouwels PJ, Vrenken H, Uitdehaag BM et al (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80(11):1025–1032PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Filippi M, Rocca MA, De Stefano N, Enzinger C, Fisher E, Horsfield MA et al (2011) Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol 68(12):1514–1520PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA et al (2009) Regional DTI differences in multiple sclerosis patients. NeuroImage 44(4):1397–1403PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC et al (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A (2008) Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 7(8):715–727PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Bright MG, Murphy K (2015) Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure. NeuroImage 114:158–169PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Bright MG, Murphy K (2013) Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. NeuroImage 64:526–537PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Brosnan CF, Raine CS (2013) The astrocyte in multiple sclerosis revisited. Glia 61(4):453–465PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6Google Scholar
  176. 176.
    Rossi DJ (2006) Another BOLD role for astrocytes: coupling blood flow to neural activity. Nat Neurosci 9(2):159–161PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86(3):1009–1031PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71(5):782–797PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Bennett M, Farnell L, Gibson W (2008) Origins of the BOLD changes due to synaptic activity at astrocytes abutting arteriolar smooth muscle. J Theor Biol 252(1):123–130PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Aquino KM, Robinson PA, Schira MM, Breakspear M (2014) Deconvolution of neural dynamics from fMRI data using a spatiotemporal hemodynamic response function. NeuroImage 94:203–215PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Drysdale P, Huber J, Robinson P, Aquino K (2010) Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. J Theor Biol 265(4):524–534PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Staffen W, Mair A, Zauner H, Unterrainer J, Niederhofer H, Kutzelnigg A et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125(6):1275–1282PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Audoin B, Ibarrola D, Ranjeva JP, Confort-Gouny S, Malikova I, Ali-Chérif A et al (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of multiple sclerosis. Hum Brain Mapp 20(2):51–58PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, Borriello G et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage 21(3):858–867PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Rocca MA, Valsasina P, Hulst HE, Abdel-Aziz K, Enzinger C, Gallo A et al (2014) Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI study. Hum Brain Mapp 35(12):5799–5814PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Hulst HE, Schoonheim MM, Roosendaal SD, Popescu V, Schweren LJ, van der Werf YD et al (2012) Functional adaptive changes within the hippocampal memory system of patients with multiple sclerosis. Hum Brain Mapp 33(10):2268–2280PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Sumowski JF, Wylie GR, DeLuca J, Chiaravalloti N (2010) Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 133(2):362–374PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Schoonheim MM, Meijer KA, Geurts JJ (2015) Network collapse and cognitive impairment in multiple sclerosis. Front Neurol 6Google Scholar
  189. 189.
    Schoonheim MM, Geurts JJ, Barkhof F (2010) The limits of functional reorganization in multiple sclerosis. Neurology 74(16):1246–1247PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Roosendaal SD, Schoonheim MM, Hulst HE, Sanz-Arigita EJ, Smith SM, Geurts JJ et al (2010) Resting state networks change in clinically isolated syndrome. Brain 133(6):1612–1621PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P et al (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology 74(16):1252–1259PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129(2):527–537PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Bonnet M, Allard M, Dilharreguy B, Deloire M, Petry K, Brochet B (2010) Cognitive compensation failure in multiple sclerosis. Neurology 75(14):1241–1248PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Audoin B, Boulanouar K, Ibarrola D, Malikova I, Confort-Gouny S, Celsis P et al (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25(10):1245–1253PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Ranjeva J-P, Audoin B, Duong MVA, Confort-Gouny S, Malikova I, Viout P et al (2006) Structural and functional surrogates of cognitive impairment at the very early stage of multiple sclerosis. J Neurol Sci 245(1):161–167PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16(3):159–172PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Rocca MA, Valsasina P, Martinelli V, Misci P, Falini A, Comi G et al (2012) Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology 79(14):1449–1457PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Cruz-Gómez ÁJ, Ventura-Campos N, Belenguer A, Ávila C, Forn C (2014) The link between resting-state functional connectivity and cognition in MS patients. Mult Scler J 20(3):338–348CrossRefGoogle Scholar
  200. 200.
    Louapre C, Perlbarg V, García-Lorenzo D, Urbanski M, Benali H, Assouad R et al (2014) Brain networks disconnection in early multiple sclerosis cognitive deficits: an anatomofunctional study. Hum Brain Mapp 35(9):4706–4717PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Bonavita S, Gallo A, Sacco R, Della Corte M, Bisecco A, Docimo R et al (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler J 17(4):411–422CrossRefGoogle Scholar
  202. 202.
    Leavitt VM, Paxton J, Sumowski JF (2014) Default network connectivity is linked to memory status in multiple sclerosis. J Int Neuropsychol Soc 20(09):937–944PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Zhou F, Zhuang Y, Gong H, Wang B, Wang X, Chen Q et al (2014) Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: a functional and structural connectivity study. PLoS One 9(7):e101198PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L et al (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci 107(13):6040–6045PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL et al (2012) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74(4):753–764PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Wojtowicz M, Mazerolle EL, Bhan V, Fisk JD (2014) Altered functional connectivity and performance variability in relapsing–remitting multiple sclerosis. Mult Scler J 1352458514524997Google Scholar
  207. 207.
    Faivre A, Rico A, Zaaraoui W, Crespy L, Reuter F, Wybrecht D et al (2012) Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult Scler J 18(9):1251–1258CrossRefGoogle Scholar
  208. 208.
    Rocca MA, Absinta M, Amato MP, Moiola L, Ghezzi A, Veggiotti P et al (2014) Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology 82(15):1314–1321PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Swaab D (1991) Brain aging and Alzheimer’s disease, “wear and tear” versus “use it or lose it”. Neurobiol Aging 12(4):317–324PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    de Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ (2012) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8(8):e1002582PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413CrossRefGoogle Scholar
  212. 212.
    Supek S, Aine CJ (2014) Magnetoencephalography: from signals to dynamic cortical networks. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  213. 213.
    Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575(3):925–936PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    da Silva FL (2013) EEG and MEG: relevance to neuroscience. Neuron 80(5):1112–1128CrossRefGoogle Scholar
  215. 215.
    Hillebrand A, Barnes GR (2005) Beamformer analysis of MEG data. Int Rev Neurobiol 68:149–171PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR (2005) A new approach to neuroimaging with magnetoencephalography. Hum Brain Mapp 25(2):199–211PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    O’Neill GC, Barratt EL, Hunt BA, Tewarie PK, Brookes MJ (2015) Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods. Phys Med Biol 60(21):R271PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30(6):1857–1865PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage 59(4):3909–3921PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. Signal Processing Magazine, IEEE 18(6):14–30CrossRefGoogle Scholar
  221. 221.
    Van Veen BD, Buckley KM (1988) Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag 5(2):4–24CrossRefGoogle Scholar
  222. 222.
    Robinson S, Vrba J (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 302–305Google Scholar
  223. 223.
    Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1):1–37PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Kida T, Tanaka E, Kakigi R (2015) Multi-dimensional dynamics of human electromagnetic brain activity. Front Hum Neurosci 9:713PubMedPubMedCentralGoogle Scholar
  225. 225.
    Licker MD, Geller E (2002) Dictionary of physics, XI ed. McGraw-Hill, ClarindaGoogle Scholar
  226. 226.
    Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage 63(2):910–920PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Stam C, Van Dijk B (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163(3):236–251CrossRefGoogle Scholar
  229. 229.
    Karhu J, Hari R, Mäkelä JP, Huttunen J, Knuutila J (1992) Cortical somatosensory magnetic responses in multiple sclerosis. Electroencephalogr Clin Neurophysiol 83(3):192–200PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Kassubek J, Sörös P, Kober H, Stippich C, Vieth JB (1999) Focal slow and beta brain activity in patients with multiple sclerosis revealed by magnetoencephalography. Brain Topogr 11(3):193–200PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Leocani L, Locatelli T, Martinelli V, Rovaris M, Falautano M, Filippi M et al (2000) Electroencephalographic coherence analysis in multiple sclerosis: correlation with clinical, neuropsychological, and MRI findings. J Neurol Neurosurg Psychiatry 69(2):192–198PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Cover KS, Vrenken H, Geurts JJ, van Oosten BW, Jelles B, Polman CH et al (2006) Multiple sclerosis patients show a highly significant decrease in alpha band interhemispheric synchronization measured using MEG. NeuroImage 29(3):783–788PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Van der Meer M, Tewarie P, Schoonheim M, Douw L, Barkhof F, Polman C et al (2013) Cognition in MS correlates with resting-state oscillatory brain activity: an explorative MEG source-space study. Neuroimage Clin 2:727–734PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Valdés-Hernández PA, Ojeda-González A, Martínez-Montes E, Lage-Castellanos A, Virués-Alba T, Valdés-Urrutia L et al (2010) White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage 49(3):2328–2339PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Hindriks R, Woolrich M, Luckhoo H, Joensson M, Mohseni H, Kringelbach M et al (2015) Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex. NeuroImage 106:328–339PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Tecchio F, Zito G, Zappasodi F, Dell’Acqua ML, Landi D, Nardo D et al (2008) Intra-cortical connectivity in multiple sclerosis: a neurophysiological approach. Brain 131(7):1783–1792PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Schoonheim MM, Geurts JJ, Landi D, Douw L, van der Meer ML, Vrenken H et al (2013) Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data. Hum Brain Mapp 34(1):52–61PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Tewarie P, Schoonheim MM, Stam CJ, van der Meer ML, van Dijk BW, Barkhof F et al (2013) Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS One 8(7):e69318PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Tewarie P, Schoonheim MM, Schouten DI, Polman CH, Balk LJ, Uitdehaag BM et al (2015) Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG study. Hum Brain Mapp 36(2):603–618PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Tewarie P, Steenwijk MD, Tijms BM, Daams M, Balk LJ, Stam CJ et al (2014) Disruption of structural and functional networks in long-standing multiple sclerosis. Hum Brain Mapp 35(12):5946–5961PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683–695PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Cv S, Van Straaten E (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087CrossRefGoogle Scholar
  243. 243.
    Van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5(10):e13701PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069CrossRefPubMedGoogle Scholar
  245. 245.
    Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMedCrossRefGoogle Scholar
  246. 246.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442PubMedCrossRefGoogle Scholar
  247. 247.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Tijms BM, Wink AM, de Haan W, van der Flier WM, Stam CJ, Scheltens P et al (2013) Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34(8):2023–2036PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Diessen E, Diederen SJ, Braun KP, Jansen FE, Stam CJ (2013) Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 54(11):1855–1865PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Van Diessen E, Numan T, van Dellen E, van der Kooi A, Boersma M, Hofman D et al (2015) Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clin Neurophysiol 126(8):1468–1481PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Tewarie P, Van Dellen E, Hillebrand A, Stam C (2015) The minimum spanning tree: an unbiased method for brain network analysis. NeuroImage 104:177–188PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Van Mieghem P, Magdalena SM. Phase transition in the link weight structure of networks. Phys Rev E 2005;72(5):056138Google Scholar
  253. 253.
    Meier J, Tewarie P, Van Mieghem P (2015) The Union of shortest path trees of functional brain networks. Brain ConnectPubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Schoonheim MM, Hulst HE, Landi D, Ciccarelli O, Roosendaal SD, Sanz-Arigita EJ et al (2012) Gender-related differences in functional connectivity in multiple sclerosis. Mult Scler J 18(2):164–173CrossRefGoogle Scholar
  255. 255.
    Rocca MA, Valsasina P, Meani A, Falini A, Comi G, Filippi M (2016) Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct Funct 221(1):115–131PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Gamboa OL, Tagliazucchi E, von Wegner F, Jurcoane A, Wahl M, Laufs H et al (2014) Working memory performance of early MS patients correlates inversely with modularity increases in resting state functional connectivity networks. NeuroImage 94:385–395PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Hardmeier M, Schoonheim MM, Geurts JJ, Hillebrand A, Polman CH, Barkhof F et al (2012) Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. PLoS One 7(7):e42087PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Schoonheim M, Geurts J, Wiebenga O, De Munck J, Polman C, Stam C et al (2014) Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Mult Scler J 20(8):1058–1065CrossRefGoogle Scholar
  259. 259.
    Tewarie P, Bright M, Hillebrand A, Robson S, Gascoyne L, Morris P et al (2016) Predicting haemodynamic networks using electrophysiology: the role of non-linear and cross-frequency interactions. NeuroImage 130:273–292PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Tewarie P, Hillebrand A, Schoonheim M, Van Dijk B, Geurts J, Barkhof F et al (2014) Functional brain network analysis using minimum spanning trees in multiple sclerosis: an MEG source-space study. NeuroImage 88:308–318PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Sbardella E, Tona F, Petsas N, Upadhyay N, Piattella M, Filippini N et al (2015) Functional connectivity changes and their relationship with clinical disability and white matter integrity in patients with relapsing–remitting multiple sclerosis. Mult Scler J 21(13):1681–1692CrossRefGoogle Scholar
  262. 262.
    Meier J, Tewarie P, Hillebrand A, Douw L, van Dijk B, Stufflebeam S et al (2016) A mapping between structural and functional brain networks. Brain Connect 6(4):298–311PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Robinson P (2012) Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory. Phys Rev E 85(1):011912CrossRefGoogle Scholar
  264. 264.
    Deco G, Tononi G, Boly M, Kringelbach ML (2015) Rethinking segregation and integration: contributions of whole-brain modelling. Nat Rev Neurosci 16(7):430–439PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Hindriks R, Adhikari M, Murayama Y, Ganzetti M, Mantini D, Logothetis N et al Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage 2015Google Scholar
  266. 266.
    Braun U, Schäfer A, Walter H, Erk S, Romanczuk-Seiferth N, Haddad L et al (2015) Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc Natl Acad Sci 112(37):11678–11683PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Smith PJP et al (2014) Fast transient networks in spontaneous human brain activity. elife e01867:3Google Scholar
  268. 268.
    Brookes MJ, O'Neill GC, Hall EL, Woolrich MW, Baker A, Corner SP et al (2014) Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity. NeuroImage 91:282–299PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    O'Neill GC, Bauer M, Woolrich MW, Morris PG, Barnes GR, Brookes MJ (2015) Dynamic recruitment of resting state sub-networks. NeuroImage 115:85–95PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using granger causality and fMRI. NeuroImage 25(1):230–242CrossRefPubMedGoogle Scholar
  271. 271.
    Hillebrand A, Tewarie P, van Dellen E, Yu M, Carbo EWS, Douw L et al (2016) Direction of information flow in large-scale resting-state networks is frequency dependent. Proc Natl Acad SciCrossRefGoogle Scholar
  272. 272.
    Lobier M, Siebenhühner F, Palva S, Palva JM (2014) Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. NeuroImage 85:853–872PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Brookes MJ, Tewarie PK, Hunt BA, Robson SE, Gascoyne LE, Liddle EB et al (2016) A multi-layer network approach to MEG Connectivity Analysis. NeuroImage 132:425–438PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Prejaas Tewarie
    • 1
  • Menno Schoonheim
    • 2
  • Arjan Hillebrand
    • 1
  1. 1.Department of Clinical Neurophysiology and MEG CenterVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Anatomy & NeurosciencesVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations