Advertisement

Epilepsy Imaging

  • Charles Mellerio
  • Francine Chassoux
  • Laurence Legrand
  • Myriam Edjlali
  • Bertrand Devaux
  • Jean-François Meder
  • Catherine Oppenheim
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Epilepsy is one of the most frequent chronic neurological disorder. The role of neuroimaging is crucial in identifying the causal lesion, as its characterization may play a major role for referring the patients to surgery. This chapter reviews the role of MRI in epilepsy, with a special focus on focal intractable epilepsies. A standard protocol is ineffective for epilepsy imaging. By contrast, an optimized protocol carried out by a neuroradiologist experienced in epilepsy imaging and guided by clinical and electroclinical data on a high field magnet improves the detection of the causal lesion. Advanced sequences such as double inversion recovery, arterial spin labeling, or relaxometry can especially be useful for localizing and characterizing the epileptogenic zone. Hippocampal sclerosis is the most frequent cause of intractable temporal epilepsy, and focal cortical dysplasia is the most frequent extratemporal lesion. Functional MRI and diffusion tensor are crucial when planning a surgical treatment.

Keywords

Epilepsy Imaging Intractable MRI Functional MRI Diffusion tensor Arterial spin labeling Relaxometry Hippocampal sclerosis Focal cortical dysplasia Malformation of cortical development 

References

  1. 1.
    Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, Gröhn O, Bankstahl JP, Friedman A, Aronica E, Gorter JA, Ravizza T, Sisodiya SM, Kokaia M, Beck H (2016) Advances in the development of biomarkers for epilepsy. Lancet Neurol 15:843–856.  https://doi.org/10.1016/S1474-4422(16)00112-5CrossRefPubMedGoogle Scholar
  2. 2.
    Gaillard WD, Chiron C, Helen Cross J, Simon Harvey A, Kuzniecky R, Hertz-Pannier L, Gilbert Vezina L (2009) Guidelines for imaging infants and children with recent-onset epilepsy. Epilepsia 50:2147–2153CrossRefPubMedGoogle Scholar
  3. 3.
    Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, Moshé SL, Perucca E, Wiebe S, French J (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51:1069–1077.  https://doi.org/10.1111/j.1528-1167.2009.02397.xCrossRefPubMedGoogle Scholar
  4. 4.
    de Tisi J, Bell GS, Peacock JL, McEvoy AW, Harkness WF, Sander JW, Duncan JS (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378:1388–1395CrossRefPubMedGoogle Scholar
  5. 5.
    Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S (2010) Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 89:310–318CrossRefPubMedGoogle Scholar
  6. 6.
    von Oertzen J, Urbach H, Jungbluth S, Kurthen M, Reuber M, Fernández G, Elger CE (2002) Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry 73:643–647.  https://doi.org/10.1136/jnnp.73.6.643CrossRefGoogle Scholar
  7. 7.
    Cendes F (2013) Neuroimaging in investigation of patients with epilepsy. Continuum Lifelong Learning Neurol 19:623–642CrossRefGoogle Scholar
  8. 8.
    Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54:1977–1987CrossRefPubMedGoogle Scholar
  9. 9.
    Saini J, Singh A, Kesavadas C, Thomas B, Rathore C, Bahuleyan B, Radhakrishnan A, Radhakrishnan K (2010) Role of three-dimensional fluid-attenuated inversion recovery (3D FLAIR) and proton density magnetic resonance imaging for the detection and evaluation of lesion extent of focal cortical dysplasia in patients with refractory epilepsy. Acta Radiol 51:218–225CrossRefPubMedGoogle Scholar
  10. 10.
    Li Q, Zhang Q, Sun H, Zhang Y, Bai R (2011) Double inversion recovery magnetic resonance imaging at 3 T: diagnostic value in hippocampal sclerosis. J Comput Assist Tomogr 35:290–293CrossRefPubMedGoogle Scholar
  11. 11.
    Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS (2006) Imaging the neocortex in epilepsy with double inversion recovery imaging. NeuroImage 31:39–50CrossRefPubMedGoogle Scholar
  12. 12.
    Mellerio C, Labeyrie M-A, Chassoux F, Roca P, Alami O, Plat M, Naggara O, Devaux B, Meder J-F, Oppenheim C (2014) 3T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia 55:117–122.  https://doi.org/10.1111/epi.12464CrossRefPubMedGoogle Scholar
  13. 13.
    Phal PM, Usmanov A, Nesbit GM, Anderson JC, Spencer D, Wang P, Helwig JA, Roberts C, Hamilton BE (2008) Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. Am J Roentgenol 191:890–895CrossRefGoogle Scholar
  14. 14.
    Rubinger L, Chan C, D’Arco F, Moineddin R, Muthaffar O, Rutka JT, Snead OC, Smith ML, Widjaja E (2016) Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia 57:32–40.  https://doi.org/10.1111/epi.13229CrossRefPubMedGoogle Scholar
  15. 15.
    Zijlmans M, de Kort GA, Witkamp TD, Huiskamp GM, Seppenwoolde J-H, van Huffelen AC, Leijten FS (2009) 3T versus 1.5 T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J Magn Reson Imaging 30:256–262CrossRefPubMedGoogle Scholar
  16. 16.
    Coras R, de Boer OJ, Armstrong D, Becker A, Jacques TS, Miyata H, Thom M, Vinters HV, Spreafico R, Oz B et al (2012) Good interobserver and intraobserver agreement in the evaluation of the new ILAE classification of focal cortical dysplasias. Epilepsia 53:1341–1348CrossRefPubMedGoogle Scholar
  17. 17.
    Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL (2009) 96-channel receive-only head coil for 3 tesla: design optimization and evaluation. Magn Reson Med 62:754–762.  https://doi.org/10.1002/mrm.22028CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oppenheim C, Dormont D, Biondi A, Lehéricy S, Hasboun D, Clémenceau S, Baulac M, Marsault C (1998) Loss of digitations of the hippocampal head on high-resolution fast spin-echo MR: a sign of mesial temporal sclerosis. Am J Neuroradiol 19:457–463PubMedGoogle Scholar
  19. 19.
    Kim DW, Lee SK, Nam H, Chu K, Chung CK, Lee S-Y, Choe G, Kim HK (2010) Epilepsy with dual pathology: surgical treatment of cortical dysplasia accompanied by hippocampal sclerosis. Epilepsia 51:1429–1435.  https://doi.org/10.1111/j.1528-1167.2009.02403.xCrossRefPubMedGoogle Scholar
  20. 20.
    Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537CrossRefGoogle Scholar
  21. 21.
    Maccotta L, Moseley ED, Benzinger TL, Hogan RE (2015) Beyond the CA1 subfield: local hippocampal shape changes in MRI-negative temporal lobe epilepsy. Epilepsia 56:780–788.  https://doi.org/10.1111/epi.12955CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kosior RK, Lauzon ML, Frayne R, Federico P (2009) Single-subject voxel-based relaxometry for clinical assessment of temporal lobe epilepsy. Epilepsy Res 86:23–31.  https://doi.org/10.1016/j.eplepsyres.2009.04.001CrossRefPubMedGoogle Scholar
  23. 23.
    Lim Y-M, Cho Y-W, Shamim S, Solomon J, Birn R, Luh WM, Gaillard WD, Ritzl EK, Theodore WH (2008) Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 82:183–189CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pendse N, Wissmeyer M, Altrichter S, Vargas M, Delavelle J, Viallon M, Federspiel A, Seeck M, Schaller K, Lövblad KO (2010) Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 37:60–63.  https://doi.org/10.1016/j.neurad.2009.05.006CrossRefPubMedGoogle Scholar
  25. 25.
    Wolf RL, Alsop DC, Levy-Reis I, Meyer PT, Maldjian JA, Gonzalez-Atavales J, French JA, Alavi A, Detre JA (2001) Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 22:1334–1341PubMedGoogle Scholar
  26. 26.
    Eberhardt KE, Stefan H, Buchfelder M, Pauli E, Hopp P, Huk W, Tomandl BF (2000) The significance of bilateral CSI changes for the postoperative outcome in temporal lobe epilepsy. J Comput Assist Tomogr 24:919–926CrossRefPubMedGoogle Scholar
  27. 27.
    Blumcke I, Vinters HV, Armstrong D (2009) Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord 11:181–193PubMedGoogle Scholar
  28. 28.
    Colombo N, Salamon N, Raybaud C (2009) Imaging of malformations of cortical development. Epileptic Disord 11:194–205PubMedGoogle Scholar
  29. 29.
    Mellerio C, Labeyrie M-A, Chassoux F, Daumas-Duport C, Landre E, Turak B, Roux F-X, Meder J-F, Devaux B, Oppenheim C (2012) Optimizing MR imaging detection of type 2 focal cortical dysplasia: best criteria for clinical practice. Am J Neuroradiol 33:1932–1938CrossRefPubMedGoogle Scholar
  30. 30.
    Widdess-Walsh P, Kellinghaus C, Jeha L (2005) Electro-clinical and imaging characteristics of focal cortical dysplasia: correlation with pathological subtypes. Epilepsy Res 67:25CrossRefPubMedGoogle Scholar
  31. 31.
    Wang DD, Deans AE, Barkovich AJ, Tihan T, Barbaro NM, Garcia PA, Chang EF (2013) Transmantle sign in focal cortical dysplasia: a unique radiological entity with excellent prognosis for seizure control: clinical article. J Neurosurg 118:337–344.  https://doi.org/10.3171/2012.10.JNS12119CrossRefPubMedGoogle Scholar
  32. 32.
    Besson P, Andermann F, Dubeau F, Bernasconi A (2008) Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain 131:3246–3255.  https://doi.org/10.1093/brain/awn224CrossRefPubMedGoogle Scholar
  33. 33.
    Mellerio C, Roca P, Chassoux F, Danière F, Cachia A, Lion S, Naggara O, Devaux B, Meder J-F, Oppenheim C (2015) The power button sign: a newly described central Sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia. Radiology 274:500–507.  https://doi.org/10.1148/radiol.14140773CrossRefPubMedGoogle Scholar
  34. 34.
    Colombo N, Tassi L, Deleo F, Citterio A, Bramerio M, Mai R, Sartori I, Cardinale F, Russo GL, Spreafico R (2012) Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology 54:1065–1077.  https://doi.org/10.1007/s00234-012-1049-1CrossRefPubMedGoogle Scholar
  35. 35.
    Kim DW, Lee SK, Chu K, Park KI, Lee SY, Lee CH, Chung CK, Choe G, Kim JY (2009) Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology 72:211–216CrossRefPubMedGoogle Scholar
  36. 36.
    Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Lüders J, Kotagal P, Lachhwani D, Dinner D, Lüders HO (2005) Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry 76:710–713CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    So EL, Lee RW (2014) Epilepsy surgery in MRI-negative epilepsies. Curr Opin Neurol 27:206–212CrossRefPubMedGoogle Scholar
  38. 38.
    Kim H, Harrison A, Kankirawatana P, Rozzelle C, Blount J, Torgerson C, Knowlton R (2013) Major white matter fiber changes in medically intractable neocortical epilepsy in children: a diffusion tensor imaging study. Epilepsy Res 103:211–220CrossRefPubMedGoogle Scholar
  39. 39.
    Altrichter S, Pendse N, Wissmeyer M, Jägersberg M, Federspiel A, Viallon M, Seeck M, Lövblad K-O (2009) Arterial spin-labeling demonstrates ictal cortical hyperperfusion in epilepsy secondary to hemimegalencephaly. J Neuroradiol 36:303–305.  https://doi.org/10.1016/j.neurad.2009.04.001CrossRefPubMedGoogle Scholar
  40. 40.
    Storti SF, Galazzo IB, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, Mai R, Manganotti P (2014) Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. NeuroImage 102:49–59.  https://doi.org/10.1016/j.neuroimage.2013.06.028CrossRefPubMedGoogle Scholar
  41. 41.
    Colliot O, Bernasconi N, Khalili N, Antel SB, Naessens V, Bernasconi A (2006) Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage 29:162–171CrossRefPubMedGoogle Scholar
  42. 42.
    Wagner J, Weber B, Urbach H, Elger CE, Huppertz H-J (2011) Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain 134:2844–2854CrossRefPubMedGoogle Scholar
  43. 43.
    Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS (2005) Whole-brain T2 mapping demonstrates occult abnormalities in focal epilepsy. Neurology 64:318–325CrossRefPubMedGoogle Scholar
  44. 44.
    Roca P, Mellerio C, Chassoux F, Rivière D, Cachia A, Charron S, Lion S, Mangin J-F, Devaux B, Meder J-F, Oppenheim C (2015) Sulcus-based MR analysis of focal cortical dysplasia located in the central region. PLoS One 10:e0122252.  https://doi.org/10.1371/journal.pone.0122252CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Devaux B, Chassoux F, Landré E, Turak B, Laurent A, Zanello M, Mellerio C, Varlet P (2017) Surgery for dysembryoplastic neuroepithelial tumors and gangliogliomas in eloquent areas. Functional results and seizure control. Neurochirurgie 63:227–234.  https://doi.org/10.1016/j.neuchi.2016.10.009CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang D, Henning TD, Zou L-G, Hu L-B, Wen L, Feng X-Y, Dai S-H, Wang W-X, Sun Q-R, Zhang Z-G (2008) Intracranial ganglioglioma: clinicopathological and MRI findings in 16 patients. Clin Radiol 63:80–91.  https://doi.org/10.1016/j.crad.2007.06.010CrossRefPubMedGoogle Scholar
  47. 47.
    Kikuchi T, Kumabe T, Higano S, Watanabe M, Tominaga T (2009) Minimum apparent diffusion coefficient for the differential diagnosis of ganglioglioma. Neurol Res 31:1102–1107.  https://doi.org/10.1179/174313209X382539CrossRefPubMedGoogle Scholar
  48. 48.
    Law M, Meltzer DE, Wetzel SG, Yang S, Knopp EA, Golfinos J, Johnson G (2004) Conventional MR imaging with simultaneous measurements of cerebral blood volume and vascular permeability in ganglioglioma. Magn Reson Imaging 22:599–606.  https://doi.org/10.1016/j.mri.2004.01.031CrossRefPubMedGoogle Scholar
  49. 49.
    Chassoux F, Rodrigo S, Mellerio C, Landré E, Miquel C, Turak B, Laschet J, Meder J-F, Roux F-X, Daumas-Duport C (2012) Dysembryoplastic neuroepithelial tumors an MRI-based scheme for epilepsy surgery. Neurology 79:1699–1707CrossRefPubMedGoogle Scholar
  50. 50.
    Campos AR, Clusmann H, von Lehe M, Niehusmann P, Becker AJ, Schramm J, Urbach H (2009) Simple and complex dysembryoplastic neuroepithelial tumors (DNT) variants: clinical profile, MRI, and histopathology. Neuroradiology 51:433–443.  https://doi.org/10.1007/s00234-009-0511-1CrossRefPubMedGoogle Scholar
  51. 51.
    Chassoux F, Daumas-Duport C (2013) Dysembryoplastic neuroepithelial tumors: where are we now? Epilepsia 54:129–134.  https://doi.org/10.1111/epi.12457CrossRefPubMedGoogle Scholar
  52. 52.
    Bulakbasi N, Kocaoglu M, Sanal TH, Tayfun C (2007) Dysembryoplastic neuroepithelial tumors: proton MR spectroscopy, diffusion and perfusion characteristics. Neuroradiology 49:805–812.  https://doi.org/10.1007/s00234-007-0263-8CrossRefPubMedGoogle Scholar
  53. 53.
    Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369.  https://doi.org/10.1093/brain/aws019CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Woodward KE, Gaxiola-Valdez I, Mainprize D, Grossi M, Goodyear BG, Federico P (2014) Recent seizure activity alters motor organization in frontal lobe epilepsy as revealed by task-based fMRI. Epilepsy Res 108:1286–1298CrossRefPubMedGoogle Scholar
  55. 55.
    Janszky J, Ebner A, Kruse B, Mertens M, Jokeit H, Seitz RJ, Witte OW, Tuxhorn I, Woermann FG (2003) Functional organization of the brain with malformations of cortical development. Ann Neurol 53:759–767.  https://doi.org/10.1002/ana.10545CrossRefPubMedGoogle Scholar
  56. 56.
    Nikolova S, Bartha R, Parrent AG, Steven DA, Diosy D, Burneo JG (2015) Functional MRI of neuronal activation in epilepsy patients with malformations of cortical development. Epilepsy Res 116:1–7.  https://doi.org/10.1016/j.eplepsyres.2015.06.012CrossRefPubMedGoogle Scholar
  57. 57.
    Vitali P, Minati L, D’Incerti L, Maccagnano E, Mavilio N, Capello D, Dylgjeri S, Rodriguez G, Franceschetti S, Spreafico R, Villani F (2008) Functional MRI in malformations of cortical development: activation of dysplastic tissue and functional reorganization. J Neuroimaging 18:296–305.  https://doi.org/10.1111/j.1552-6569.2007.00164.xCrossRefPubMedGoogle Scholar
  58. 58.
    Achten E, Jackson GD, Cameron JA, Abbott DF, Stella DL, Fabinyi GCA (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210:529–538.  https://doi.org/10.1148/radiology.210.2.r99ja31529CrossRefPubMedGoogle Scholar
  59. 59.
    Lenge M, Barba C, Montanaro D, Aghakhanyan G, Frijia F, Guerrini R (2018) Relationships between morphologic and functional patterns in the polymicrogyric cortex. Cereb Cortex 28:1076–1086.  https://doi.org/10.1093/cercor/bhx036CrossRefGoogle Scholar
  60. 60.
    Christodoulou JA, Barnard ME, Del Tufo SN, Katzir T, Whitfield-Gabrieli S, Gabrieli JD, Chang BS (2013) Integration of gray matter nodules into functional cortical circuits in periventricular heterotopia. Epilepsy Behav 29:400–406CrossRefPubMedGoogle Scholar
  61. 61.
    Dumoulin SO, Jirsch JD, Bernasconi A (2007) Functional organization of human visual cortex in occipital polymicrogyria. Hum Brain Mapp 28:1302–1312CrossRefPubMedGoogle Scholar
  62. 62.
    Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav 20:214–222CrossRefPubMedGoogle Scholar
  63. 63.
    Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B, Mann M, Godon-Hardy S, Nioche C, Aït-Ameur A, Sarrazin JL, Chodkiewicz JP, Cordoliani YS (2003) Functional MR imaging in assessment of language dominance in epileptic patients. NeuroImage 18:460–467.  https://doi.org/10.1016/S1053-8119(03)00025-9CrossRefPubMedGoogle Scholar
  64. 64.
    Thivard L, Hombrouck J, du Montcel ST, Delmaire C, Cohen L, Samson S, Dupont S, Chiras J, Baulac M, Lehéricy S (2005) Productive and perceptive language reorganization in temporal lobe epilepsy. NeuroImage 24:841–851CrossRefPubMedGoogle Scholar
  65. 65.
    Wang A, Peters TM, de Ribaupierre S, Mirsattari SM (2012) Functional magnetic resonance imaging for language mapping in temporal lobe epilepsy. Epilepsy Res Treat 2012:198183PubMedPubMedCentralGoogle Scholar
  66. 66.
    Benke T, Köylü B, Visani P, Karner E, Brenneis C, Bartha L, Trinka E, Trieb T, Felber S, Bauer G et al (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia 47:1308–1319CrossRefPubMedGoogle Scholar
  67. 67.
    Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, E Rozman M, Binder JR (2013) Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 54:314–322.  https://doi.org/10.1111/epi.12068CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J, Klaver P, Ruhlmann J, Reul J, Elger CE (2003) Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 60:969–975CrossRefPubMedGoogle Scholar
  69. 69.
    Berl MM, Zimmaro LA, Khan OI, Dustin I, Ritzl E, Duke ES, Sepeta LN, Sato S, Theodore WH, Gaillard WD (2014) Characterization of atypical language activation patterns in focal epilepsy. Ann Neurol 75:33–42CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Duke ES, Tesfaye M, Berl MM, Walker JE, Ritzl EK, Fasano RE, Conry JA, Pearl PL, Sato S, Theodore WH et al (2012) The effect of seizure focus on regional language processing areas. Epilepsia 53:1044–1050CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Jensen EJ, Hargreaves IS, Pexman PM, Bass A, Goodyear BG, Federico P (2011) Abnormalities of lexical and semantic processing in left temporal lobe epilepsy: an fMRI study. Epilepsia 52:2013–2021CrossRefPubMedGoogle Scholar
  72. 72.
    Rosazza C, Ghielmetti F, Minati L, Vitali P, Giovagnoli AR, Deleo F, Didato G, Parente A, Marras C, Bruzzone MG et al (2013) Preoperative language lateralization in temporal lobe epilepsy (TLE) predicts peri-ictal, pre-and post-operative language performance: an fMRI study. NeuroImage Clin 3:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Austermuehle A, Cocjin J, Reynolds R, Agrawal S, Sepeta L, Gaillard WD, Zaghloul KA, Inati S, Theodore WH (2017) Language functional MRI and direct cortical stimulation in epilepsy preoperative planning. Ann Neurol 81:526–537.  https://doi.org/10.1002/ana.24899CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    de Vanssay-Maigne A, Noulhiane M, Devauchelle AD, Rodrigo S, Baudoin-Chial S, Meder JF, Oppenheim C, Chiron C, Chassoux F (2011) Modulation of encoding and retrieval by recollection and familiarity: mapping the medial temporal lobe networks. NeuroImage 58:1131–1138CrossRefPubMedGoogle Scholar
  75. 75.
    Towgood K, Barker GJ, Caceres A, Crum WR, Elwes RDC, Costafreda SG, Mehta MA, Morris RG, von Oertzen TJ, Richardson MP (2015) Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy. Hum Brain Mapp 36:1595–1608.  https://doi.org/10.1002/hbm.22726CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bonelli SB, Powell RHW, Yogarajah M, Samson RS, Symms MR, Thompson PJ, Koepp MJ, Duncan JS (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133:1186–1199.  https://doi.org/10.1093/brain/awq006CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Duncan JS, Winston GP, Koepp MJ, Ourselin S (2016) Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 15:420–433CrossRefPubMedGoogle Scholar
  78. 78.
    Dupont S, Duron E, Samson S, Denos M, Volle E, Delmaire C, Navarro V, Chiras J, Lehéricy S, Samson Y et al (2010) Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome? 1. Radiology 255:128–134CrossRefPubMedGoogle Scholar
  79. 79.
    Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, Duncan JS (2015) Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology 84:1512–1519.  https://doi.org/10.1212/WNL.0000000000001461CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM (2008) Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 49:1377–1394CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Sidhu MK, Stretton J, Winston GP, Bonelli S, Centeno M, Vollmar C, Symms M, Thompson PJ, Koepp MJ, Duncan JS (2013) A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain 136:1868–1888CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Englot DJ, Konrad PE, Morgan VL (2016) Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia 57:1546–1557CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yang Z, Choupan J, Reutens D, Hocking J (2015) Lateralization of temporal lobe epilepsy based on resting-state functional magnetic resonance imaging and machine learning. Front Neurol 6:184CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Haneef Z, Lenartowicz A, Yeh HJ, Levin HS, Engel J, Stern JM (2014) Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia 55:137–145CrossRefPubMedGoogle Scholar
  85. 85.
    Maccotta L, He BJ, Snyder AZ, Eisenman LN, Benzinger TL, Ances BM, Corbetta M, Hogan RE (2013) Impaired and facilitated functional networks in temporal lobe epilepsy. Neuroimage Clin 2:862–872.  https://doi.org/10.1016/j.nicl.2013.06.011CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Luo C, An D, Yao D, Gotman J (2014) Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy. Neuroimage Clin 4:668–675.  https://doi.org/10.1016/j.nicl.2014.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Pedersen M, Curwood EK, Vaughan DN, Omidvarnia AH, Jackson GD (2016) Abnormal brain areas common to the focal epilepsies: multivariate pattern analysis of fMRI. Brain Connect 6:208–215.  https://doi.org/10.1089/brain.2015.0367CrossRefPubMedGoogle Scholar
  88. 88.
    Englot DJ, Hinkley LB, Kort NS, Imber BS, Mizuiri D, Honma SM, Findlay AM, Garrett C, Cheung PL, Mantle M, Tarapore PE, Knowlton RC, Chang EF, Kirsch HE, Nagarajan SS (2015) Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138:2249–2262.  https://doi.org/10.1093/brain/awv130CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Doucet GE, Rider R, Taylor N, Skidmore C, Sharan A, Sperling M, Tracy JI (2015) Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy. Epilepsia 56:517–526.  https://doi.org/10.1111/epi.12936CrossRefPubMedGoogle Scholar
  90. 90.
    Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, Kikuchi K, Miki H, Ohnishi T (2012) Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70:283–294.  https://doi.org/10.1227/NEU.0b013e31823020e6CrossRefPubMedGoogle Scholar
  91. 91.
    Jeong J-W, Asano E, Juhász C, Chugani HT (2014) Quantification of primary motor pathways using diffusion MRI tractography and its application to predict postoperative motor deficits in children with focal epilepsy. Hum Brain Mapp 35:3216–3226CrossRefPubMedGoogle Scholar
  92. 92.
    Rodrigo S, Oppenheim C, Chassoux F, Hodel J, De Vanssay A, Baudoin-Chial S, Devaux B, Meder J-F (2008) Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia 49:1367–1376.  https://doi.org/10.1111/j.1528-1167.2008.01607.xCrossRefPubMedGoogle Scholar
  93. 94.
    Winston GP, Daga P, Stretton J, Modat M, Symms MR, McEvoy AW, Ourselin S, Duncan JS (2012) Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol 71:334–341.  https://doi.org/10.1002/ana.22619CrossRefPubMedPubMedCentralGoogle Scholar
  94. 93.
    Yogarajah M, Focke NK, Bonelli S, Cercignani M, Acheson J, Parker GJM, Alexander DC, McEvoy AW, Symms MR, Koepp MJ et al (2009) Defining Meyer’s loop–temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain 132:1656–1668CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Piper RJ, Yoong MM, Kandasamy J, Chin RF (2014) Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg 124:59–65CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charles Mellerio
    • 1
    • 2
  • Francine Chassoux
    • 3
  • Laurence Legrand
    • 1
  • Myriam Edjlali
    • 1
  • Bertrand Devaux
    • 3
  • Jean-François Meder
    • 1
  • Catherine Oppenheim
    • 1
  1. 1.Department of RadiologyCentre Hospitalier Sainte-Anne, Université Paris Descartes SorbonneParisFrance
  2. 2.Department of imagingCentre cardiologique du NordSaint-DenisFrance
  3. 3.Department of NeurosurgeryCentre de Psychiatrie et Neurosciences, INSERM U894ParisFrance

Personalised recommendations