Clinical Utility of Resting State Functional MRI

  • Mary Pat McAndrewsEmail author
  • Alexander Barnett
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The use of fMRI to understand how cognitive processes such as language and memory are disrupted by neurological disorders is starting to bear fruit. While much of the early translational work was concerned with focal task-related activation, it is becoming increasingly clear that network properties and connectivity amongst brain regions may be a more sensitive and appropriate biomarker of functional integrity of brain networks that support cognition. Here, we discuss resting state functional MRI (rsfMRI) as an emerging technique to address questions about cognition, particularly memory and language, in the context of medial temporal lobe epilepsy (mTLE) as well as some other disorders characterized by relatively focal damage in the medial temporal lobe (MTL).


Memory Language fMRI Connectivity 


  1. 1.
    Hermann BP, Wyler AR, Somes G, Clement L (1994) Dysnomia after left anterior temporal lobectomy without functional mapping: frequency and correlates. Neurosurgery 35(1):52–56. discussion 6–7. PubMed PMID: 7936152PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Davies KG, Bell BD, Bush AJ, Hermann BP, Dohan FC Jr, Jaap AS (1998) Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia 39(4):407–419. PubMed PMID: 9578031PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Schwarz M, Pauli E, Stefan H (2005) Model based prognosis of postoperative object naming in left temporal lobe epilepsy. Seizure 14(8):562–568. PubMed PMID: 16236531PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chelune GJ (1995) Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Archives Clin Neuropsychol: Official Journal of the National Academy of Neuropsychologists 10(5):413–432. PubMed PMID: 14588901CrossRefGoogle Scholar
  5. 5.
    Harvey DJ, Naugle RI, Magleby J, Chapin JS, Najm IM, Bingaman W et al (2008) Relationship between presurgical memory performance on the Wechsler memory scale-III and memory change following temporal resection for treatment of intractable epilepsy. Epilepsy Behav: E&B 13(2):372–375. PubMed PMID: 18556247CrossRefGoogle Scholar
  6. 6.
    Milner B (1972) Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 19:421–446. PubMed PMID: 4637561PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    McAndrews MP, Cohn M (2012) Neuropsychology in temporal lobe epilepsy: influences from cognitive neuroscience and functional neuroimaging. Epilepsy Res Treatment 2012:925238. PubMed PMID: 22957249CrossRefGoogle Scholar
  8. 8.
    Jones-Gotman M, Smith ML, Risse GL, Westerveld M, Swanson SJ, Giovagnoli AR et al (2010) The contribution of neuropsychology to diagnostic assessment in epilepsy. Epilepsy Behav: E&B. 18(1–2):3–12. PubMed PMID: 20471914CrossRefGoogle Scholar
  9. 9.
    Alessio A, Pereira FR, Sercheli MS, Rondina JM, Ozelo HB, Bilevicius E et al (2013) Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an fMRI study. Hum Brain Mapp 34(1):186–199. PubMed PMID: 22038783PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92(2):197–201. PubMed PMID: 8841666PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Whitwell JL, Jack CR Jr, Pankratz VS, Parisi JE, Knopman DS, Boeve BF et al (2008) Rates of brain atrophy over time in autopsy-proven frontotemporal dementia and Alzheimer disease. NeuroImage 39(3):1034–1040. PubMed PMID: 17988893PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jack CR Jr, Shiung MM, Gunter JL, O'Brien PC, Weigand SD, Knopman DS et al (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62(4):591–600. PubMed PMID: 14981176PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6(4):347–361. PubMed PMID: 19689234PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goekoop R, Rombouts SA, Jonker C, Hibbel A, Knol DL, Truyen L et al (2004) Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. NeuroImage 23(4):1450–1459. PubMed PMID: 15589109PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rosen AC, Sugiura L, Kramer JH, Whitfield-Gabrieli S, Gabrieli JD (2011) Cognitive training changes hippocampal function in mild cognitive impairment: a pilot study. J Alzheimer's Dis: JAD 26(Suppl 3):349–357. PubMed PMID: 21971474CrossRefGoogle Scholar
  16. 16.
    Detre JA, Maccotta L, King D, Alsop DC, Glosser G, D'Esposito M et al (1998) Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 50(4):926–932. PubMed PMID: 9566374PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Vannest J, Szaflarski JP, Privitera MD, Schefft BK, Holland SK (2008) Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav: E&B 12(3):410–418. PubMed PMID: 18162441CrossRefGoogle Scholar
  18. 18.
    Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ (2004) Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain: A Journal of Neurology. 127(Pt 11):2419–2426. PubMed PMID: 15459025CrossRefGoogle Scholar
  19. 19.
    Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS et al (2008) Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry 79(6):686–693. PubMed PMID: 17898035PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Barnett AJ, Park MT, Pipitone J, Chakravarty MM, McAndrews MP (2015) Functional and structural correlates of memory in patients with mesial temporal lobe epilepsy. Front Neurol 6:103. PubMed PMID: 26029159PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mandzia JL, McAndrews MP, Grady CL, Graham SJ, Black SE (2009) Neural correlates of incidental memory in mild cognitive impairment: an fMRI study. Neurobiol Aging 30(5):717–730. PubMed PMID: 17963998PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL et al (2006) Activation of brain regions vulnerable to Alzheimer's disease: the effect of mild cognitive impairment. Neurobiol Aging 27(11):1604–1612. PubMed PMID: 16226349PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Binder JR (2011) Functional MRI is a valid noninvasive alternative to Wada testing. Epilepsy Behav: E&B. 20(2):214–222. PubMed PMID: 20850386CrossRefGoogle Scholar
  24. 24.
    Bonelli SB, Thompson PJ, Yogarajah M, Vollmar C, Powell RH, Symms MR et al (2012) Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia 53(4):639–650. PubMed PMID: 22429073PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL 3rd et al (2003) Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60(11):1788–1792. PubMed PMID: 12796532PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Westmacott R, Silver FL, McAndrews MP (2008) Understanding medial temporal activation in memory tasks: evidence from fMRI of encoding and recognition in a case of transient global amnesia. Hippocampus 18(3):317–325. PubMed PMID: 18064704PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies. Neuropsychologia 46(6):1624–1635. PubMed PMID: 18206188PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bakker A, Albert MS, Krauss G, Speck CL, Gallagher M (2015) Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin 7:688–698. PubMed PMID: 25844322PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Protzner AB, Mandzia JL, Black SE, McAndrews MP (2011) Network interactions explain effective encoding in the context of medial temporal damage in MCI. Hum Brain Mapp 32(8):1277–1289. PubMed PMID: 20845396PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Barnett AJ, Marty-Dugas J, McAndrews MP (2014) Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav: E&B. 32:114–120. PubMed PMID: 24534479CrossRefGoogle Scholar
  31. 31.
    Binder JR, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller WM (2010) A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia 51(4):618–626. PubMed PMID: 19817807PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Towgood K, Barker GJ, Caceres A, Crum WR, Elwes RD, Costafreda SG et al (2015) Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy. Hum Brain Mapp 36(4):1595–1608. PubMed PMID: 25727386PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37(4):1083–1090. discussion 97-9. PubMed PMID: 17719799PubMedCrossRefGoogle Scholar
  34. 34.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38. PubMed PMID: 18400922PubMedCrossRefGoogle Scholar
  35. 35.
    Andrews-Hanna JR, Reidler JS, Huang C, Buckner RL (2010) Evidence for the default network's role in spontaneous cognition. J Neurophysiol 104(1):322–335. PubMed PMID: 20463201PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL (2010) Functional-anatomic fractionation of the brain's default network. Neuron 65(4):550–562. PubMed PMID: 20188659PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW et al (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A 109(8):3131–3136. PubMed PMID: 22323591PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. PubMed PMID: 21653723PubMedCrossRefGoogle Scholar
  39. 39.
    Bertolero MA, Yeo BT, D'Esposito M (2015) The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A 112(49):E6798–E6807. PubMed PMID: 26598686PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853. PubMed PMID: 16945915PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yeo BT, Krienen FM, Chee MW, Buckner RL (2014) Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. NeuroImage 88:212–227. PubMed PMID: 24185018PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yeo BT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL et al (2015) Functional specialization and flexibility in human association cortex. Cereb Cortex 25(10):3654–3672. PubMed PMID: 25249407PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ et al (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain: A Journal of Neurology. 133(Pt 4):1186–1199. PubMed PMID: 20157009CrossRefGoogle Scholar
  44. 44.
    Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ et al (2015) Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology 84(15):1512–1519. PubMed PMID: 25770199PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rugg MD, Vilberg KL (2013) Brain networks underlying episodic memory retrieval. Curr Opin Neurobiol 23(2):255–260. PubMed PMID: 23206590PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    McDermott KB, Szpunar KK, Christ SE (2009) Laboratory-based and autobiographical retrieval tasks differ substantially in their neural substrates. Neuropsychologia 47(11):2290–2298. PubMed PMID: 19159634PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McAndrews MP (2014) Memory assessment in the clinical context using functional magnetic resonance imaging: a critical look at the state of the field. Neuroimaging Clin N Am 24(4):585–597. PubMed PMID: 25441502PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Frings L, Schulze-Bonhage A, Spreer J, Wagner K (2009) Reduced interhemispheric hippocampal BOLD signal coupling related to early epilepsy onset. Seizure 18(2):153–157. PubMed PMID: 18675555PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    James GA, Tripathi SP, Ojemann JG, Gross RE, Drane DL (2013) Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy. J Neurosurg 119(2):288–300. PubMed PMID: 23706058PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Voets NL, Adcock JE, Stacey R, Hart Y, Carpenter K, Matthews PM et al (2009) Functional and structural changes in the memory network associated with left temporal lobe epilepsy. Hum Brain Mapp 30(12):4070–4081. PubMed PMID: 19517529PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z et al (2010) Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res 1323:152–160. PubMed PMID: 20132802. Epub 2010/02/06. engPubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    McCormick C, Quraan M, Cohn M, Valiante TA, McAndrews MP (2013) Default mode network connectivity indicates episodic memory capacity in mesial temporal lobe epilepsy. Epilepsia 54(5):809–818. PubMed PMID: 23360362PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    McCormick C, Protzner AB, Barnett AJ, Cohn M, Valiante TA, McAndrews MP (2014) Linking DMN connectivity to episodic memory capacity: what can we learn from patients with medial temporal lobe damage? NeuroImage Clinical 5:188–196. PubMed PMID: 25068108PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Addis DR, Moscovitch M, McAndrews MP (2007) Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain : a journal of neurology. 130(Pt 9):2327–2342CrossRefGoogle Scholar
  55. 55.
    Voets NL, Menke RA, Jbabdi S, Husain M, Stacey R, Carpenter K et al (2015) Thalamo-cortical disruption contributes to short-term memory deficits in patients with medial temporal lobe damage. Cereb Cortex 25(11):4584–4595. PubMed PMID: 26009613PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N (2012) Structural substrates for resting network disruption in temporal lobe epilepsy. Brain: A Journal of Neurology 135(Pt 8):2350–2357. PubMed PMID: 22669081CrossRefGoogle Scholar
  57. 57.
    Bigras C, Shear PK, Vannest J, Allendorfer JB, Szaflarski JP (2013) The effects of temporal lobe epilepsy on scene encoding. Epilepsy Behav: E&B. 26(1):11–21. PubMed PMID: 23207513CrossRefGoogle Scholar
  58. 58.
    Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci U S A 104(24):10240–10245. PubMed PMID: 17548818PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sporns O (2013) The human connectome: origins and challenges. NeuroImage 80:53–61. PubMed PMID: 23528922PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Maguire EA (2001) Neuroimaging studies of autobiographical event memory. Philos Trans R Soc Lond Ser B Biol Sci 356(1413):1441–1451. PubMed PMID: 11571035CrossRefGoogle Scholar
  61. 61.
    Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44(12):2189–2208. PubMed PMID: 16806314PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Denkova EJ, Manning L (2014) FMRI contributions to addressing autobiographical memory impairment in temporal lobe pathology. World J Rad 6(4):93–105. PubMed PMID: 24778771CrossRefGoogle Scholar
  63. 63.
    Voets NL, Zamboni G, Stokes MG, Carpenter K, Stacey R, Adcock JE (2014) Aberrant functional connectivity in dissociable hippocampal networks is associated with deficits in memory. J Neurosci: Official Journal of the Society for Neuroscience. 34(14):4920–4928. PubMed PMID: 24695711CrossRefGoogle Scholar
  64. 64.
    Holmes M, Folley BS, Sonmezturk HH, Gore JC, Kang H, Abou-Khalil B et al (2014) Resting state functional connectivity of the hippocampus associated with neurocognitive function in left temporal lobe epilepsy. Hum Brain Mapp 35(3):735–744. PubMed PMID: 23124719PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Doucet G, Osipowicz K, Sharan A, Sperling MR, Tracy JI (2013) Extratemporal functional connectivity impairments at rest are related to memory performance in mesial temporal epilepsy. Hum Brain Mapp 34(9):2202–2216. PubMed PMID: 22505284PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nellessen N, Rottschy C, Eickhoff SB, Ketteler ST, Kuhn H, Shah NJ et al (2015) Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer's disease: a coordinate-based meta-analysis. Brain Struct Funct 220(3):1555–1571. PubMed PMID: 24633738PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schwindt GC, Black SE (2009) Functional imaging studies of episodic memory in Alzheimer's disease: a quantitative meta-analysis. NeuroImage 45(1):181–190. PubMed PMID: 19103293PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474. PubMed PMID: 22578498PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sperling R (2007) Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci 1097:146–155. PubMed PMID: 17413017PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Miller SL, Celone K, DePeau K, Diamond E, Dickerson BC, Rentz D et al (2008) Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci U S A 105(6):2181–2186. PubMed PMID: 18238903PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Vannini P, O'Brien J, O'Keefe K, Pihlajamaki M, Laviolette P, Sperling RA (2011) What goes down must come up: role of the posteromedial cortices in encoding and retrieval. Cereb Cortex 21(1):22–34. PubMed PMID: 20363808PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chhatwal JP, Sperling RA (2012) Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer's disease. J Alzheimer's Dis: JAD 31(Suppl 3):S155–S167. PubMed PMID: 22890098CrossRefGoogle Scholar
  73. 73.
    Krajcovicova L, Marecek R, Mikl M, Rektorova I (2014) Disruption of resting functional connectivity in Alzheimer's patients and at-risk subjects. Curr Neurol Neurosci Rep 14(10):491. PubMed PMID: 25120223PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hayes SM, Salat DH, Verfaellie M (2012) Default network connectivity in medial temporal lobe amnesia. J Neurosci: Official Journal of the Society for Neuroscience. 32(42):14622–14629. PubMed PMID: 23077048CrossRefGoogle Scholar
  75. 75.
    Dunn CJ, Duffy SL, Hickie IB, Lagopoulos J, Lewis SJ, Naismith SL et al (2014) Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment. NeuroImage Clin 4:473–480. PubMed PMID: 24634833PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Han SD, Arfanakis K, Fleischman DA, Leurgans SE, Tuminello ER, Edmonds EC et al (2012) Functional connectivity variations in mild cognitive impairment: associations with cognitive function. J Int Neuropsychol Soc 18(1):39–48. PubMed PMID: 22005016PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang Z, Liang P, Jia X, Qi Z, Yu L, Yang Y et al (2011) Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J Neurol Sci 309(1–2):79–85. PubMed PMID: 21821265CrossRefPubMedGoogle Scholar
  78. 78.
    Libby LA, Ekstrom AD, Ragland JD, Ranganath C (2012) Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci: Official Journal of the Society for Neuroscience 32(19):6550–6560. PubMed PMID: 22573677CrossRefGoogle Scholar
  79. 79.
    Ritchey M, Libby LA, Ranganath C (2015) Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog Brain Res 219:45–64. PubMed PMID: 26072233PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Poppenk J, Evensmoen HR, Moscovitch M, Nadel L (2013) Long-axis specialization of the human hippocampus. Trends Cogn Sci 17(5):230–240. PubMed PMID: 23597720PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100(1):129–139. PubMed PMID: 18385483PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kim H (2015) Encoding and retrieval along the long axis of the hippocampus and their relationships with dorsal attention and default mode networks: the HERNET model. Hippocampus 25(4):500–510. PubMed PMID: 25367784PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Thom M, Sisodiya SM, Beckett A, Martinian L, Lin WR, Harkness W et al (2002) Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 61(6):510–519. PubMed PMID: 12071634PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Crandall PH (1984) Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia 25(6):729–740. PubMed PMID: 6510381PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25(6):721–728. PubMed PMID: 6510380PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Woermann FG, Barker GJ, Birnie KD, Meencke HJ, Duncan JS (1998) Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis. J Neurol Neurosurg Psychiatry 65(5):656–664. PubMed PMID: 9810933PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Adnan A, Barnett A, Moayedi M, McCormick C, Cohn M, McAndrews MP (2016) Distinct hippocampal functional networks revealed by tractography-based parcellation. Brain Struct Funct 221(6):2999–3012. PubMed PMID: 26206251PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    McCormick C, St-Laurent M, Ty A, Valiante TA, McAndrews MP (2015) Functional and effective hippocampal-neocortical connectivity during construction and elaboration of autobiographical memory retrieval. Cereb Cortex 25(5):1297–1305. PubMed PMID: 24275829PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Das SR, Pluta J, Mancuso L, Kliot D, Yushkevich PA, Wolk DA (2015) Anterior and posterior MTL networks in aging and MCI. Neurobiol Aging 36(Suppl 1):S141–S150. S50 e1. PubMed PMID: 25444600. Pubmed Central PMCID: 4342050PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88. PubMed PMID: 20392276PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Tie Y, Rigolo L, Norton IH, Huang RY, Wu W, Orringer D et al (2014) Defining language networks from resting-state fMRI for surgical planning- a feasibility study. Hum Brain Mapp 35:1018–1030PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Tomasi D, Volkow ND (2012) Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 17:841–854. PubMed PMID: 22212597PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhu L, Fan Y, Zou Q, Wang J, Gao JH, Niu Z (2014) Temporal reliability and lateralization of the resting-state language network. PLoS One 9:1–14. PubMed PMID: 24475058Google Scholar
  94. 94.
    Schurz M, Wimmer H, Richlan F, Ludersdorfer P, Klackl J, Kronbichler M (2015) Resting-state and task-based functional brain connectivity in developmental dyslexia. Cereb Cortex 25:3502–3514. PubMed PMID: 25169986PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Wada JA (1997) Clinical experimental observations of carotid artery injections of sodium amytal. Brain Cogn 33(1):11–13. PubMed PMID: 9056272. Epub 1997/02/01. engPubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hamberger MJ (2007) Cortical language mapping in epilepsy: a critical review. Neuropsychol Rev 17(4):477–489. PubMed PMID: 18004662PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. NeuroImage 18:423–438. PubMed PMID: 12595196PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Dym RJ, Burns J, Freeman K, Lipton ML (2011) Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology 261:446–455. PubMed PMID: 21803921PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gutbrod K, Spring D, Degonda N, Heinemann D, Nirkko A, Hauf M et al (2011) Determination of language dominance: Wada test and fMRI compared using a novel sentence task. J Neuroimaging: Official Journal of the American Society of Neuroimaging:1–9. PubMed PMID: 21883628Google Scholar
  100. 100.
    Janecek JK, Swanson SJ, Sabsevitz DS, Ta H, Raghavan M, E Rozman M et al (2013) Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 54:314–322. PubMed PMID: 23294162PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lehéricy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633. PubMed PMID: 10762504PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52:1335–1347. PubMed PMID: 12762879PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rutten GJM, Ramsey NF, Van Rijen PC, Noordmans HJ, Van Veelen CWM (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 51:350–360. PubMed PMID: 11891830PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Benjamin CF, Walshaw PD, Hale K, Gaillard WD, Baxter LC, Berl MM et al (2017) Presurgical language fMRI: mapping of six critical regions. Hum Brain Mapp 38(8):4239–4255PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Branco DM, Suarez RO, Whalen S, O'Shea JP, Nelson AP, da Costa JC et al (2006) Functional MRI of memory in the hippocampus: laterality indices may be more meaningful if calculated from whole voxel distributions. NeuroImage 32(2):592–602. PubMed PMID: 16777435PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wilke M, Lidzba K (2007) LI-tool: a new toolbox to assess lateralization in functional MR-data. J Neurosci Methods 163(1):128–136. PubMed PMID: 17386945PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Barnett A, Marty-Dugas J, McAndrews MP (2014) Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav: E&B 32:114–120. PubMed PMID: 24534479CrossRefGoogle Scholar
  108. 108.
    Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC et al (2011) Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage 54(2):1465–1475. PubMed PMID: 20884358PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Binder JR, Swanson SJ, Hammeke TA, Sabsevitz DS (2008) A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia 49:1980–1997. PubMed PMID: 18513352PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bradshaw AR, Thompson PA, Wilson AC, Bishop DVM, Woodhead ZVJ (2017) Measuring language lateralisation with different language tasks: a systematic review. Peer J 5:e3929. PubMed PMID: 29085748PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mitchell TJ, Hacker CD, Breshears JD, Szrama NP, Sharma M, Bundy DT et al (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73:969–983. PubMed PMID: 24264234PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Branco P, Seixas D, Deprez S, Kovacs S, Peeters R, Castro SL et al (2016) Resting-state functional magnetic resonance imaging for language preoperative planning. Front Hum Neurosci 10:11. PubMed PMID: 26869899PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sair HI, Yahyavi-Firouz-Abadi N, Calhoun VD, Airan RD, Agarwal S, Intrapiromkul J et al (2016) Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Hum Brain Mapp 37:913–923. PubMed PMID: 24686109PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Doucet GE, Pustina D, Skidmore C, Sharan A, Sperling MR, Tracy JI (2015) Resting-state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals. Hum Brain Mapp 36:288–303. PubMed PMID: 25187327PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Barnett A, Audrain S, McAndrews MP (2017) Applications of resting-state functional MR imaging to epilepsy. Neuroimaging Clin N Am 27(4):697–708. PubMed PMID: 28985938PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. PubMed PMID: 19190637CrossRefGoogle Scholar
  117. 117.
    Sporns O (2013) Structure and function of complex brain networks. Dialogues Clin Neurosci 15(3):247–262. PubMed PMID: 24174898PubMedPubMedCentralGoogle Scholar
  118. 118.
    Sporns O (2012) From simple graphs to the connectome: networks in neuroimaging. NeuroImage 62(2):881–886. PubMed PMID: 21964480PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640. PubMed PMID: 26393868PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phy 1(1):3. PubMed PMID: 17908336CrossRefGoogle Scholar
  121. 121.
    Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17. PubMed PMID: 17274684PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang J, Qiu S, Xu Y, Liu Z, Wen X, Hu X et al (2014) Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy. Clin Neurophysiol 125(9):1744–1756. PubMed PMID: 24686109PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Chiang S, Stern JM, Engel J Jr, Levin HS, Haneef Z (2014) Differences in graph theory functional connectivity in left and right temporal lobe epilepsy. Epilepsy Res 108(10):1770–1781. PubMed PMID: 25445238PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Song J, Nair VA, Gaggl W, Prabhakaran V (2015) Disrupted brain functional Organization in Epilepsy Revealed by graph theory analysis. Brain Connect 5(5):276–283. PubMed PMID: 25647011PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Vlooswijk MC, Vaessen MJ, Jansen JF, de Krom MC, Majoie HJ, Hofman PA et al (2011) Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology 77(10):938–944. PubMed PMID: 21832213PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Doucet GE, Sharan A, Pustina D, Skidmore C, Sperling MR, Tracy JI (2015) Early and late age of seizure onset have a differential impact on brain resting-state organization in temporal lobe epilepsy. Brain Topogr 28(1):113–126. PubMed PMID: 24881003PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Toussaint PJ, Maiz S, Coynel D, Doyon J, Messe A, de Souza LC et al (2014) Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage 101:778–786. PubMed PMID: 25111470PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, Barkhof F et al (2010) Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity. PLoS One 5(11):e13788. PubMed PMID: 21072180PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2016) Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Brain Imaging Behav 10(3):799–817. PubMed PMID: 26363784CrossRefGoogle Scholar
  130. 130.
    Xie T, He Y (2011) Mapping the Alzheimer's brain with connectomics. Front Psych 2:77. PubMed PMID: 22291664Google Scholar
  131. 131.
    Doucet GE, Rider R, Taylor N, Skidmore C, Sharan A, Sperling M et al (2015) Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy. Epilepsia 56:517–526. PubMed PMID: 25708625PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Brandt DJ, Sommer J, Krach S, Bedenbender J, Kircher T, Paulus FM et al (2013) Test-retest reliability of fMRI brain activity during memory encoding. Front Psych 4:163. PubMed PMID: 24367338Google Scholar
  133. 133.
    Clement F, Belleville S (2009) Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp 30(12):4033–4047. PubMed PMID: 19492301PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ et al (2009) The resting brain: unconstrained yet reliable. Cerebr Cort 19(10):2209–2229. PubMed PMID: 19221144CrossRefGoogle Scholar
  135. 135.
    Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP (2010) Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. NeuroImage 49(3):2163–2177. PubMed PMID: 19896537PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Song J, Desphande AS, Meier TB, Tudorascu DL, Vergun S, Nair VA et al (2012) Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One 7(12):e49847. PubMed PMID: 23227153PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR et al (2013) The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 83:550–558. PubMed PMID: 23747458PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Babiloni C, Vecchio F, Altavilla R, Tibuzzi F, Lizio R, Altamura C et al (2014) Hypercapnia affects the functional coupling of resting state electroencephalographic rhythms and cerebral haemodynamics in healthy elderly subjects and in patients with amnestic mild cognitive impairment. Clin Neurophysiol 125(4):685–693. PubMed PMID: 24238990PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Gomez-Gonzalo M, Losi G, Brondi M, Uva L, Sato SS, de Curtis M et al (2011) Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses. Front Cell Neurosci 5:8. PubMed PMID: 21747758PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rosengarten B, Paulsen S, Burr O, Kaps M (2009) Neurovascular coupling in Alzheimer patients: effect of acetylcholine-esterase inhibitors. Neurobiol Aging 30(12):1918–1923. PubMed PMID: 18395940PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Yasuda CL, Centeno M, Vollmar C, Stretton J, Symms M, Cendes F et al (2013) The effect of topiramate on cognitive fMRI. Epilepsy Res 105(1–2):250–255. PubMed PMID: 23333471PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Agarwal S, Sair HI, Pillai JJ (2017) Limitations of resting-state functional MR imaging in the setting of focal brain lesions. Neuroimaging Clin N Am 27(4):645–661. PubMed PMID: 28985935PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Krembil Research InstituteUniversity Health NetworkTorontoCanada
  2. 2.Deparment of PsychologyUniversity of TorontoTorontoCanada
  3. 3.Neuropsychology ClinicToronto Western HospitalTorontoCanada

Personalised recommendations