Magnetic Resonance Imaging: Basic Principles and Applications

  • G. de Marco
  • I. Peretti
Part of the Contemporary Clinical Neuroscience book series (CCNE)


In the medical field, imaging (MRI) is based on the measurement of the nuclear magnetism of substances that form biological tissues. This exploration technique comes from a physical phenomenon understood since 1946 (Bloch, Science 118(3068):425–430, 1953; Purcell, Science 118(3068):431–436, 1953), called nuclear magnetic resonance (NMR), which was first used in the fields of chemistry and biochemistry, through spectroscopy. Unlike other medical imaging methods, various physicochemical variables are involved in the formation of the magnetic resonance image, whereas, for example, in XCT, the only physical parameter involved in the formation of the image is the absorption coefficient of the X-ray beam. This feature is both an advantage and a disadvantage. The measurement of several parameters is richer because it makes it possible to obtain additional information but it complicates the interpretation of images. After presenting the physical principles of nuclear magnetic resonance, we will present techniques for measuring parameters that characterize the structure (white matter), the morphology (gray matter), and the cellular metabolism in the brain.


NMR MRI Signal Fourier Plane Diffusion Tractography VBM Cortical Thickness MRS Spectroscopy 


  1. 1.
    Bloch F (1953) The principle of nuclear induction. Science 118(3068):425–430CrossRefPubMedGoogle Scholar
  2. 2.
    Purcell EM (1953) Research in nuclear magnetism. Science 118(3068):431–436CrossRefPubMedGoogle Scholar
  3. 3.
    Le Bihan D (2014) Diffusion MRI: what water tells us about the brain. EMBO Mol Med 6(5):569–573PubMedPubMedCentralGoogle Scholar
  4. 4.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467CrossRefPubMedGoogle Scholar
  5. 5.
    Yendiki A et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform 5:23CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jbabdi S et al (2007) A Bayesian framework for global tractography. NeuroImage 37(1):116–129CrossRefPubMedGoogle Scholar
  7. 7.
    Hutton C et al (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. NeuroImage 48(2):371–380CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry – the methods. NeuroImage 11(6 Pt 1):805–821CrossRefPubMedGoogle Scholar
  9. 9.
    Kurth F, Gaser C, Luders E (2015) A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat Protoc 10(2):293–304CrossRefPubMedGoogle Scholar
  10. 10.
    Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194CrossRefPubMedGoogle Scholar
  11. 11.
    Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97(20):11050–11055CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Du AT et al (2007) Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 130(Pt 4):1159–1166PubMedPubMedCentralGoogle Scholar
  13. 13.
    Proctor W, Yu F (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 77(5):717CrossRefGoogle Scholar
  14. 14.
    Gutowsky H, McCall D, Slichter CP (1953) Nuclear magnetic resonance multiplets in liquids. J Chem Phys 21(2):279–292CrossRefGoogle Scholar
  15. 15.
    Frahm J et al (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9(1):79–93CrossRefPubMedGoogle Scholar
  16. 16.
    Frahm J et al (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11(1):47–63CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. de Marco
    • 1
  • I. Peretti
    • 1
  1. 1.Laboratoire CeRSM (EA-2931), Equipe Analyse du Mouvement en Biomécanique, Physiologie et ImagerieUniversité Paris NanterreNanterreFrance

Personalised recommendations