Advertisement

The Utility of Geophysical Models in Archaeology: Illustrative Case Studies

Chapter
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

This chapter uses case studies to illustrate the way geophysical techniques are integrated into archaeological approaches. The general idea is to show how the different geophysical models obtained using magnetic, electric, seismic and GPR data, are used in the archaeological praxis and the capacity they have to respond to particular questions.

To understand their area of application and how we can extract useful information from them, it is first necessary to establish the basic points on which the geophysical models are established. For this reason, the most general features of the geophysical exploration techniques are presented first, followed by, in successive sections, a description of their main areas of application illustrated with examples.

These areas of application have been grouped into three domains: (1) the use of geophysical models for working out the geoarchaeological context of a site; (2) for obtaining subsurface models containing the spatial distribution of buried structures; and (3) for making a detailed study of a particular structure.

We conclude this chapter by showing that geophysical information is a useful tool in archaeological research. Thanks to these methods, we are able determine the geological features of a site and assess their potential value in order to plan subsequent archaeological activities.

Keywords

Geophysical prospection Geoarchaeology Buried structures Non-destructive exploration methods 

Notes

Acknowledgements

All the geophysical models presented in this chapter were generated by Applied Geophysics in the Andalusian Institute of Geophysics at the University of Granada (IAG-UGR). Both the geophysical instruments for acquiring the data and the processing software were purchased thanks to a European Regional Development Fund (ERDF).

References

  1. Aitken J (1958) Magnetic prospecting I. The Water Newton Survey. Archaeometry 1:24–29CrossRefGoogle Scholar
  2. Aitken MJ (1961) Physics and archaeology. Interscience, New YorkGoogle Scholar
  3. Becker H (1997) Basilika Kaiser Konstatins in Ostia Antica mit modernsedtem Magnetometer entdeckt? Denkmalpflege Informationen, hrsg. V. Bayer. Landersamt für Denkmalpflegem Ausgabe B. Nr. 106/22. August 1997-2Google Scholar
  4. Berge MA, Drahor MG (2011) Electrical resistivity tomography investigations of multilayered archaeological settlements: part I – modelling. Archaeol Prospect 18:159–171CrossRefGoogle Scholar
  5. Clark A (1986) Archaeologycal geophysics in Britain. Geophysics 51(7):1404–1413CrossRefGoogle Scholar
  6. Daniels DJ (ed) (2004) Ground-penetrating radar, 2nd edn. The Institution of Electrical Engineers, London, p 726. isbn:0-86341-360-9Google Scholar
  7. Fasbindert JWE (1994) Die magnetishen Eigenschaften und die Genese ferromagnetique Minerale in Bödem im Hindblick auf die magnetsche Prospektion archäelogischer Boderndenkmäler, Buxh am ErlbachGoogle Scholar
  8. Fernández G, Teixidó T, Peña JA, Burillo F, Claros J (2015) Using shallow geophysical methods to characterise the monumental building at the Segeda I site (Spain). J Archaeol Sci Rep 2:427–436.  https://doi.org/10.1016/j.jasrep.2015.04.0062352-409X/2015CrossRefGoogle Scholar
  9. Gaffney C, Gater J (2003) Revealing the buried past: geophysics for archaeologists stroud. (Tempus)Google Scholar
  10. Gibson TH (1986) Magnetic prospection on prehistoric sites in western Canada. Geophysics 51(3):553–560CrossRefGoogle Scholar
  11. Irano Y, Dannoura M, Aono K, Igatashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2009) Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319:15–24CrossRefGoogle Scholar
  12. Lecome I, Gjoystdal H, Dalhe A, Pedersen OC (2000) Improving modeling and inversion in refraction seismics with a first order Eifonal solver. Geophys Prospect 48:437–454CrossRefGoogle Scholar
  13. Loke MH (2015) 2-D and 3-D ERT surveys and data interpretation, Piedmont regional Order of geologists Pasi geophysics. Turin, Italy, 10th Sept. 2015. Geotomo Software Pvt Ltd. www.geotomosoft.com
  14. Martínez-Moreno FJ, Galindo-Zaldívar J, Pedrera A, Teixido T, Ruano P, Peña JA, González-Castillo L, Ruiz-Constán A, López-Chicano M, Martín-Rosales W (2014) Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J Appl Geophys 107:149–162.  https://doi.org/10.1016/j.jappgeo.2014.05.021CrossRefGoogle Scholar
  15. Novo A, Lorenzo H, Rial FI, Solla M (2012) From pseudo-3D to full-resolution GPR imaging of a complex Roman Site. Near Surf Geophys 10:11–15.  https://doi.org/10.3997/1873-064.2011016CrossRefGoogle Scholar
  16. Peña JA, Teixidó T (2008) Intervención arqueológica punctual, prospección superficial y prospección geofísica con radra del subsuelo modelaidad 3D en la Hoya Nueva, junto a la Alcazaba de almería. Internal document of Andalusian Institute of Geophysics (Granada University). Ref. AGA/2008-56Google Scholar
  17. Peña JA, Teixidó T (2012) Cover surfaces as a new technique for 3D GPR image enhancement: Archaeological aspplications. Repositorio Institucional de la Universidad de Granada. http://hdl.handle.net/10481/22949
  18. Peña JA, Teixidó T, Carmona E, Sierra M (2008) Prospección magnética y radar 3D como métodos para obtener información a priori en la planificación de una excavación arqueológica. Caso de estudio: Yacimiento del Cortijo de Quintos (Córdoba, España). http://hdl.handle.net/10481/23460
  19. Teixidó T, Peña JA, Lopez Castro JL (2010) Prospecció Geofísica en el Yacimiento Arqueológico de Utica, Túnez. Campaña arqueológica de 2010. Internal document of Andalusian Institute of Geophysics (Granada University). Ref. AGA-ID/2010-78Google Scholar
  20. Teixidó T, Artigot EG, Peña JA, Molina F, Nájera T, Carrión F (2013a) Geoarchaeological context of the Motilla de la Vega Site (Spain) based on electrical resistivity tomography. Archaeol Prospect 20:11–22.  https://doi.org/10.1002/arp.1440CrossRefGoogle Scholar
  21. Teixidó T, Peña JA, Ruso JA, Alcalá S (2013b) Assessment of experimental device and the GPR resolution suitable to characterize the cork oak root system. Case of study la Alcaidesa Natural Park, Cádiz (SPAIN). Internal document of Andalusian Institute of Geophysics (Granada University). Ref. AGA-ID/2013-19Google Scholar
  22. Teixidó T, Peña JA, Moya L, Alemán B, Claros J (2014) Archaeologic superficial prospection and GPR exploration in the Roman Site of Ciavieja (Elejido, Spain). Internal document of Andalusian Institute of Geophysics (Granada University). Ref. AGA/2014-104Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Andaluz de Geofísica (IAG)Universidad de Granada, Campus Universitario de CartujaGranadaSpain
  2. 2.Dpto. de Prehistoria y ArqueologíaUniversidad de Granada, Campus Universitario de CartujaGranadaSpain

Personalised recommendations