Advertisement

P53 in Head and Neck Squamous Cell Carcinoma

  • Janaki Parameswaran
  • Barbara Burtness
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

TP53 is the most commonly mutated gene in head and neck cancer. Mutations in TP53 are associated with poor prognosis; approximately 50% of patients with locally advanced disease and nearly all patients with metastatic disease succumb to their illness. Novel and more effective treatment strategies are needed for these patients. However, due to the numerous intracellular roles of p53, and to the presence of both gain-of-function and loss-of-function mutations, targeting p53 has been challenging. Here, we review the p53 pathway and its role in the pathogenesis, prognosis, and treatment of head and neck squamous cell carcinoma.

Keywords

P53 Head and neck squamous cell carcinoma Tumor suppressor 

References

  1. 1.
    Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9:862–73.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Farhang Ghahremani M, Goossens S, Nittner D, et al. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 2013;20:888–97.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berl). 2007;85:1175–86.CrossRefGoogle Scholar
  7. 7.
    Huang Y, Yu P, Li W, et al. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene. 2014;33:3830–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Palumbo A Jr, Da Costa Nde O, Bonamino MH, et al. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer. 2015;14:145.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Muller PAJ, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer Discov. 2014;4:405.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Soussi T. p53 alterations in human cancer: more questions than answers. Oncogene. 2007;26:2145–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Peltonen JK, Helppi HM, Pääkkö P, et al. p53 in head and neck cancer: functional consequences and environmental implications of TP53 mutations. Head Neck Oncol. 2010;2:36.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    The Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRefGoogle Scholar
  16. 16.
    Shin DM, Kim J, Ro JY, et al. Activation of p53 gene expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 1994;54:321–6.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hayes DN, Waes C, Seiwert TY. Genetic landscape of human papillomavirus-associated head and neck cancer and comparison to tobacco-related tumors. J Clin Oncol. 2015;33:3227.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Beck TN, Golemis EA. Genomic insights into head and neck cancer. Cancers Head Neck. 2016;1:1.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Maruyama H, Yasui T, Ishikawa-Fujiwara T, et al. Human papillomavirus and p53 mutations in head and neck squamous cell carcinoma among Japanese population. Cancer Sci. 2014;105:409–17.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Hafkamp HC, Speel EJM, Haesevoets A, et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5–8. Int J Cancer. 2003;107:394–400.CrossRefPubMedGoogle Scholar
  23. 23.
    Khoury MP, Bourdon JC. The isoforms of the p53 protein. Cold Spring Harb Perspect Biol. 2010;2:a000927.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Khoury MP, Bourdon J-C. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2:453–65.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol. 2010;2:a000919.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Raj N, Attardi LD. The transactivation domains of the p53 protein. Cold Spring Harb Perspect Med. 2016.  https://doi.org/10.1101/cshperspect.a026047.
  27. 27.
    Puca R, Nardinocchi L, Givol D, et al. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29:4378–87.CrossRefPubMedGoogle Scholar
  28. 28.
    Miller Jenkins LM, Yamaguchi H, Hayashi R, et al. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry. 2009;48:1244–55.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Shan B, Li DW, Bruschweiler-Li L, et al. Competitive binding between dynamic p53 transactivation subdomains to human MDM2 protein: implications for regulating the p53.MDM2/MDMX interaction. J Biol Chem. 2012;287:30376–84.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Lee CW, Martinez-Yamout MA, Dyson HJ, et al. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry. 2010;49:9964–71.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Cho Y, Gorina S, Jeffrey PD, et al. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Friend S. p53: a glimpse at the puppet behind the shadow play. Science. 1994;265:334–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hainaut P, Pfeifer GP. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb Perspect Med. 2016;6:a026179.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    McLure KG, Lee PW. How p53 binds DNA as a tetramer. EMBO J. 1998;17:3342–50.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Chene P. The role of tetramerization in p53 function. Oncogene. 2001;20:2611–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 1993;12:5057–64.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kubbutat MH, Ludwig RL, Ashcroft M, et al. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol. 1998;18:5690–8.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Maki CG. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem. 1999;274:16531–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stommel JM, Marchenko ND, Jimenez GS, et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999;18:1660–72.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Hupp TR, Meek DW, Midgley CA, et al. Regulation of the specific DNA binding function of p53. Cell. 1992;71:875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Laptenko O, Shiff I, Freed-Pastor W, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 2015;57:1034–46.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Laptenko O, Tong DR, Manfredi J, et al. The tail that wags the dog: how the disordered C-terminal domain controls the transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem Sci. 2016;41:1022–34.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90:595–606.Google Scholar
  44. 44.
    Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998;12:2831–41.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Liu L, Scolnick DM, Trievel RC, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19:1202–9.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Rodriguez MS, Desterro JMP, Lain S, et al. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol. 2000;20:8458–67.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Nakamura S, Roth JA, Mukhopadhyay T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol. 2000;20:9391–8.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 90:809–19.Google Scholar
  50. 50.
    Dotsch V, Bernassola F, Coutandin D, et al. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010;2:a004887.PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Liu G, Nozell S, Xiao H, et al. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol. 2004;24:487–501.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Helton ES, Zhu J, Chen X. The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem. 2006;281:2533–42.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Du J, Romano RA, Si H, et al. Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation. J Pathol. 2014;232:356–68.  https://doi.org/10.1002/path.4302.
  54. 54.
    King KE, Ponnamperuma RM, Yamashita T, et al. deltaNp63alpha functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene. 2003;22:3635–44.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Deyoung MP, Ellisen LW. p63 and p73 in human cancer: defining the network. Oncogene. 2007;26:5169–83.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Patturajan M, Nomoto S, Sommer M, et al. ∆Np63 induces β-catenin nuclear accumulation and signaling. Cancer Cell. 1:369–79.Google Scholar
  57. 57.
    Senoo M, Matsumura Y, Habu S. TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene. 2002;21:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Murray-Zmijewski F, Lane DP, Bourdon JC. p53//p63//p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chen X, Sturgis EM, Etzel CJ, et al. p73 G4C14-to-A4T14 polymorphism and risk of human papillomavirus associated squamous cell carcinoma of the oropharynx in never smokers and never drinkers. Cancer. 2008;113:3307–14.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer. 2016;138:1577–85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–60.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cheok CF, Verma CS, Baselga J, et al. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sharp DA, Kratowicz SA, Sank MJ, et al. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem. 1999;274:38189–96.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Valentin-Vega YA, Box N, Terzian T, et al. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation. 2009;77:442–9.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Marine JC, Jochemsen AG. MDMX (MDM4), a promising target for p53 reactivation therapy and beyond. Cold Spring Harb Perspect Med. 2016;6:a026237.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Bartel F, Schulz J, Bohnke A, et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer. 2005;117:469–75.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Danovi D, Meulmeester E, Pasini D, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24:5835–43.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Ramos YF, Stad R, Attema J, et al. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001;61:1839–42.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Riemenschneider MJ, Knobbe CB, Reifenberger G. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer. 2003;104:752–7.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Valentin-Vega YA, Barboza JA, Chau GP, et al. Overexpression of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol. 2007;38:1553–62.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol. 2004;5:805–15.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Weber JD, Taylor LJ, Roussel MF, et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ozenne P, Eymin B, Brambilla E, et al. The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer. 2010;127:2239–47.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Millon R, Muller D, Schultz I, et al. Loss of MDM2 expression in human head and neck squamous cell carcinomas and clinical significance. Oral Oncol. 2001;37:620–31.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sailasree R, Abhilash A, Sathyan KM, et al. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomark Prev. 2008;17:414–20.CrossRefGoogle Scholar
  79. 79.
    Schlecht NF, Ben-Dayan M, Anayannis N, et al. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma. Cancer Med. 2015;4:342–53.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Sakaguchi K, Saito S, Higashimoto Y, et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 2000;275:9278–83.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Dornan D, Hupp TR. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep. 2001;2:139–44.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641–3.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kee BL, Arias J, Montminy MR. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem. 1996;271(5):2373.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999;18:5061–72.PubMedCentralCrossRefPubMedGoogle Scholar
  86. 86.
    Zimmermann H, Degenkolbe R, Bernard HU, et al. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol. 1999;73:6209–19.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Carracedo DG, Astudillo A, Rodrigo JP, et al. Skp2, p27kip1 and EGFR assessment in head and neck squamous cell carcinoma: prognostic implications. Oncol Rep. 2008;20:589–95.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Wu CC, Yang TY, Yu CT, et al. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11:3433–42.PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36:55–62.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004;279:52175–82.CrossRefPubMedGoogle Scholar
  91. 91.
    Marxer M, Ma HT, Man WY, et al. p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene. 2014;33:3550–60.CrossRefPubMedGoogle Scholar
  92. 92.
    Mehra R, Serebriiskii IG, Burtness B, et al. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14:e425–35.PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Reiter R, Gais P, Jütting U, et al. Aurora kinase a messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:5136.CrossRefPubMedGoogle Scholar
  94. 94.
    Li Y, Zhang J. AURKA is a predictor of chemotherapy response and prognosis for patients with advanced oral squamous cell carcinoma. Tumour Biol. 2015;36:3557–64.CrossRefPubMedGoogle Scholar
  95. 95.
    Melichar B, Adenis A, Lockhart AC, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16:395–405.CrossRefPubMedGoogle Scholar
  96. 96.
    Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995;10:188–95.CrossRefPubMedGoogle Scholar
  97. 97.
    Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996;15:1615–24.PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Arias-Lopez C, Lazaro-Trueba I, Kerr P, et al. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep. 2006;7:219–24.CrossRefPubMedGoogle Scholar
  99. 99.
    Gatz SA, Wiesmuller L. p53 in recombination and repair. Cell Death Differ. 2006;13:1003–16.CrossRefPubMedGoogle Scholar
  100. 100.
    Zink D, Mayr C, Janz C, et al. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene. 2002;21:4788–800.CrossRefPubMedGoogle Scholar
  101. 101.
    Achanta G, Huang P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 2004;64:6233–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Oka S, Leon J, Tsuchimoto D, et al. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogene. 2014;3:e121.CrossRefGoogle Scholar
  103. 103.
    Zhou J, Ahn J, Wilson SH, et al. A role for p53 in base excision repair. EMBO J. 2001;20:914–23.PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death Differ. 2006;13:1256–9.PubMedCentralCrossRefPubMedGoogle Scholar
  105. 105.
    Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.CrossRefPubMedGoogle Scholar
  106. 106.
    Wilson GD, Saunders MI, Dische S, et al. bcl-2 expression in head and neck cancer: an enigmatic prognostic marker. Int J Radiat Oncol Biol Phys. 2001;49:435–41.CrossRefPubMedGoogle Scholar
  107. 107.
    Gallo O, Boddi V, Calzolari A, et al. bcl-2 protein expression correlates with recurrence and survival in early stage head and neck cancer treated by radiotherapy. Clin Cancer Res. 1996;2:261–7.PubMedGoogle Scholar
  108. 108.
    Pena JC, Thompson CB, Recant W, et al. Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer. 1999;85:164–70.CrossRefPubMedGoogle Scholar
  109. 109.
    Grochola LF, Zeron-Medina J, Mériaux S, et al. Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol. 2010;2:a001032.PubMedCentralCrossRefPubMedGoogle Scholar
  110. 110.
    Buchman VL, Chumakov PM, Ninkina NN, et al. A variation in the structure of the protein-coding region of the human p53 gene. Gene. 1988;70:245–52.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Shen H, Zheng Y, Sturgis EM, et al. p53 codon 72 polymorphism and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Lett. 2002;183:123–30.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Sullivan A, Syed N, Gasco M, et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene. 2004;23:3328–37.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bulavin DV, Saito S, Hollander MC, et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999;18:6845–54.PubMedCentralCrossRefPubMedGoogle Scholar
  114. 114.
    Li X, Dumont P, Della Pietra A, et al. The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005;280:24245–51.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Basu S, Barnoud T, Kung CP, et al. The African-specific S47 polymorphism of p53 alters chemosensitivity. Cell Cycle. 2016;15:2557–60.PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Felley-Bosco E, Weston A, Cawley HM, et al. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet. 1993;53:752–9.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Yu H, Huang YJ, Liu Z, et al. Effects of MDM2 promoter polymorphisms and p53 codon 72 polymorphism on risk and age at onset of squamous cell carcinoma of the head and neck. Mol Carcinog. 2011;50:697–706.PubMedCentralCrossRefPubMedGoogle Scholar
  118. 118.
    Zhou J, Yang Y, Zhang D, et al. Association of the recurrence of vocal leukoplakia with MDM2-309 variants over a 2-year period: a prospective study. Acta Otolaryngol. 2016;136:95–9.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Vivenza D, Gasco M, Monteverde M, et al. MDM2 309 polymorphism predicts outcome in platinum-treated locally advanced head and neck cancer. Oral Oncol. 2012;48(7):602.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Malkin D. Li-fraumeni syndrome. Genes Cancer. 2011;2:475–84.PubMedCentralCrossRefPubMedGoogle Scholar
  121. 121.
    Schneider KZK, Nichols KE, et al. Li-Fraumeni syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews® [Internet], 1999 Jan 19 [Updated 2013 Apr 11].Google Scholar
  122. 122.
    Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 2003;22:1210–22.PubMedCentralCrossRefPubMedGoogle Scholar
  124. 124.
    Wang XW, Tseng A, Ellis NA, et al. Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem. 2001;276:32948–55.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Arora H, Chacon AH, Choudhary S, et al. Bloom syndrome. Int J Dermatol. 2014;53:798–802.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gorlin RJ, et al. Syndromes of the head and neck: Oxford University Press, New York, NY; 2001.Google Scholar
  127. 127.
    Blander G, Kipnis J, Leal JF, et al. Physical and functional interaction between p53 and the Werner’s syndrome protein. J Biol Chem. 1999;274:29463–9.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Spillare EA, Robles AI, Wang XW, et al. p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev. 1999;13:1355–60.PubMedCentralCrossRefPubMedGoogle Scholar
  129. 129.
    Lauper JM, Krause A, Vaughan TL, et al. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8:e59709.PubMedCentralCrossRefPubMedGoogle Scholar
  130. 130.
    Brennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tinhofer I, Budach V, Saki M, et al. Targeted next-generation sequencing of locally advanced squamous cell carcinomas of the head and neck reveals druggable targets for improving adjuvant chemoradiation. Eur J Cancer. 2016;57:78–86.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Morris LT, Chandramohan R, West L, et al. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 2017;3(2):244-255Google Scholar
  134. 134.
    Bradford CR, Zhu S, Poore J, et al. p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of Veterans Affairs Laryngeal Cancer Cooperative Study Group. Arch Otolaryngol Head Neck Surg. 1997;123:605–9.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Group* TDoVALCS. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med. 1991;324:1685–90.CrossRefGoogle Scholar
  136. 136.
    Neskey DM, Osman AA, Ow TJ, et al. Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res. 2015;75:1527–36.PubMedCentralCrossRefPubMedGoogle Scholar
  137. 137.
    Masica DL, Li S, Douville C, et al. Predicting survival in head and neck squamous cell carcinoma from TP53 mutation. Hum Genet. 2015;134:497–507.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    van Houten VM, Tabor MP, van den Brekel MW, et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol. 2002;198:476–86.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Shanmugaratnam K, Sobin LH. The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer. 1993;71:2689–97.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Vasef MA, Ferlito A, Weiss LM. Nasopharyngeal carcinoma, with emphasis on its relationship to Epstein-Barr virus. Ann Otol Rhinol Laryngol. 1997;106:348–56.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Singhi AD, Califano J, Westra WH. High-risk human papillomavirus in nasopharyngeal carcinoma. Head Neck. 2012;34:213–8.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Maxwell JH, Kumar B, Feng FY, et al. HPV-positive/p16-positive/EBV-negative nasopharyngeal carcinoma in white North Americans. Head Neck. 2010;32:562–7.PubMedCentralPubMedGoogle Scholar
  144. 144.
    Sheu LF, Chen A, Lee HS, et al. Cooperative interactions among p53, bcl-2 and Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma cells. Pathol Int. 2004;54:475–85.CrossRefPubMedGoogle Scholar
  145. 145.
    Niedobitek G, Agathanggelou A, Barber P, et al. P53 overexpression and Epstein-Barr virus infection in undifferentiated and squamous cell nasopharyngeal carcinomas. J Pathol. 1993;170:457–61.CrossRefPubMedGoogle Scholar
  146. 146.
    Murono S, Yoshizaki T, Park CS, et al. Association of Epstein-Barr virus infection with p53 protein accumulation but not bcl-2 protein in nasopharyngeal carcinoma. Histopathology. 1999;34:432–8.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Lo KW, Mok CH, Huang DP, et al. p53 mutation in human nasopharyngeal carcinomas. Anticancer Res. 1992;12:1957–63.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Sun Y, Hegamyer G, Cheng YJ, et al. An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci U S A. 1992;89:6516–20.PubMedCentralCrossRefPubMedGoogle Scholar
  149. 149.
    Van Tornout JM, Spruck CH 3rd, Shibata A, et al. Presence of p53 mutations in primary nasopharyngeal carcinoma (NPC) in non-Asians of Los Angeles, California, a low-risk population for NPC. Cancer Epidemiol Biomark Prev. 1997;6:493–7.Google Scholar
  150. 150.
    Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3:117–29.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Koch WM, Brennan JA, Zahurak M, et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 1996;88:1580–6.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Alsner J, Sørensen SB, Overgaard J. TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother Oncol. 2001;59:179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Skinner HD, Sandulache VC, Ow TJ, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Bradford CR, Zhu S, Ogawa H, et al. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck. 2003;25:654–61.CrossRefPubMedGoogle Scholar
  155. 155.
    Hoffmann TK, Sonkoly E, Hauser U, et al. Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:1100–9.CrossRefPubMedGoogle Scholar
  156. 156.
    Andrews GA, Xi S, Pomerantz RG, et al. Mutation of p53 in head and neck squamous cell carcinoma correlates with Bcl-2 expression and increased susceptibility to cisplatin-induced apoptosis. Head Neck. 2004;26:870–7.CrossRefPubMedGoogle Scholar
  157. 157.
    Mandic R, Schamberger CJ, Muller JF, et al. Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlates with mutations affecting the COOH-terminal nuclear localization signal of p53. Clin Cancer Res. 2005;11:6845–52.CrossRefPubMedGoogle Scholar
  158. 158.
    Osman AA, Neskey DM, Katsonis P, et al. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 2015;75:1205–15.PubMedCentralCrossRefPubMedGoogle Scholar
  159. 159.
    Gadhikar MA, Sciuto MR, Alves MVO, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12:1860.PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Bergamaschi D, Gasco M, Hiller L, et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell. 2003;3:387–402.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Ekshyyan O, Rong Y, Rong X, et al. Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Mol Cancer Ther. 2009;8:2255–65.PubMedCentralCrossRefPubMedGoogle Scholar
  162. 162.
    Tokalov SV, Abolmaali N. Radiosensitization of p53-deficient lung cancer cells by pre-treatment with cytostatic compounds. Anticancer Res. 2012;32:1239–43.PubMedGoogle Scholar
  163. 163.
    Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21:92–8.CrossRefPubMedGoogle Scholar
  164. 164.
    Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350:1937–44.CrossRefPubMedGoogle Scholar
  165. 165.
    Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349:2091–8.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Fallai C, Perrone F, Licitra L, et al. Oropharyngeal squamous cell carcinoma treated with radiotherapy or radiochemotherapy: prognostic role of TP53 and HPV status. Int J Radiat Oncol Biol Phys. 2009;75:1053–9.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head & neck. Int J Radiat Oncol Biol Phys. 2012;84:1198–205.PubMedCentralCrossRefPubMedGoogle Scholar
  168. 168.
    Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck. 2005;27:843–50.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Wang Y, Li J, Booher RN, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001;61:8211–7.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Do K, Wilsker D, Ji J, et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol. 2015;33:3409–15.PubMedCentralCrossRefPubMedGoogle Scholar
  171. 171.
    Suzanne L, Jos HB, Jan HMS. Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase results in sensitization of p53-deficient tumor cells to DNA-damaging agents. Curr Clin Pharmacol. 2010;5:186–91.CrossRefGoogle Scholar
  172. 172.
    Leijen S, van Geel RM, Pavlick AC, et al. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol. 2016;34:4371–80.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Leijen S, van Geel RM, Sonke GS, et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol. 2016;34:4354–61.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Salim KY, Maleki Vareki S, Danter WR, et al. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget. 2016;7:41363–79.PubMedCentralCrossRefPubMedGoogle Scholar
  175. 175.
    Silver NL, Osman AA, Patel AA, et al. A novel third generation thiosemicarbazone, COTI-2, is highly effective in killing head and neck squamous cell carcinomas (HNSCC) bearing a variety of TP53 mutations. Int J Radiat Oncol Biol Phys. 94:942.Google Scholar
  176. 176.
    Lambert JMR, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–88.CrossRefPubMedGoogle Scholar
  177. 177.
    Wang W, Takimoto R, Rastinejad F, et al. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 2003;23:2171–81.PubMedCentralCrossRefPubMedGoogle Scholar
  178. 178.
    Wischhusen J, Naumann U, Ohgaki H, et al. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 22:8233–8245, 0000.Google Scholar
  179. 179.
    Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem. 2005;280:30384–91.CrossRefPubMedGoogle Scholar
  180. 180.
    Kravchenko JE, Ilyinskaya GV, Komarov PG, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A. 2008;105:6302–7.PubMedCentralCrossRefPubMedGoogle Scholar
  181. 181.
    Roh JL, Kang SK, Minn I, et al. p53-reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. 2011;47:8–15.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Roh JL, Ko JH, Moon SJ, et al. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer. Cancer Lett. 2012;325:35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004;10:1321–8.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    He T, Guo J, Song H, et al. Nutlin-3, an antagonist of MDM2, enhances the radiosensitivity of esophageal squamous cancer with wild-type p53. Pathol Oncol Res. 2018;24:75–81.Google Scholar
  186. 186.
    Aziz MH, Shen H, Maki CG. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene. 2011;30:4678–86.PubMedCentralCrossRefPubMedGoogle Scholar
  187. 187.
    Bu Y, Cai G, Shen Y, et al. Targeting NF-kappaB RelA/p65 phosphorylation overcomes RITA resistance. Cancer Lett. 2016;383:261–71.CrossRefPubMedGoogle Scholar
  188. 188.
    Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98:298–300.CrossRefPubMedGoogle Scholar
  189. 189.
    Nemunaitis J, Clayman G, Agarwala SS, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res. 2009;15:7719–25.CrossRefPubMedGoogle Scholar
  190. 190.
    Senior K. ONYX-015 phase II clinical trial results. Lancet Oncol. 2001;2:3.CrossRefGoogle Scholar
  191. 191.
    Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856.PubMedCentralCrossRefPubMedGoogle Scholar
  192. 192.
    Chow LQ, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838.CrossRefPubMedGoogle Scholar
  193. 193.
    Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438–50.PubMedCentralCrossRefPubMedGoogle Scholar
  194. 194.
    Cortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108:1–9.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.H. Lee Moffitt Cancer Center and Research Institute, Department of Head and Neck-Endocrine OncologyTampaUSA
  2. 2.Department of Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations