Advertisement

Hyaluronan-Mediated CD44 Signaling Activates Cancer Stem Cells in Head and Neck Cancer

  • Lilly Y. W. Bourguignon
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease associated with high morbidity and mortality. Hyaluronan (HA), a major component in the extracellular matrix (ECM) of most mammalian tissues, is accumulated in many types of tumors including HNSCC and is also highly concentrated in stem cell niches. The unique HA-enriched microenvironment appears to be involved in both the self-renewal and differentiation of human cancer stem cells (CSCs). HA binds to a ubiquitous, abundant, and functionally important family of cell surface receptors, defined by CD44. This article reviews the current evidence for the existence of a subpopulation of CD44-expressing cancer stem cells (CSCs) in HNSCC. A special emphasis is placed on HA/CD44-dependent expression of stem cell transcription factors (Nanog, OCT4, and SOX2), cell signaling, and oncogenic microRNA activation, and how the action of these factors supports CSC functions including formation of spheroid cells, self-renewal, clone formation, and chemotherapeutic drug resistance. All of these events are known to contribute to CSC-associated tumor initiation and HNSCC progression in head and neck cancer. HA/CD44-mediated CSC signaling pathways are emerging as important structural and functional tumor markers. In addition, these proteins may be valuable as drug targets in strategies to inhibit tumor cell growth, survival, and invasion/metastasis as well as to overcome chemoresistance in HNSCC.

Keywords

Cancer stem cells (CSCs) Hyaluronan (HA) CD44 Stemness miRNAs Chemoresistance HNSCC 

Notes

Acknowledgment

We gratefully acknowledge the assistance of Dr. Gerard J. Bourguignon in the preparation and review of this manuscript. This work was supported by Veterans Affairs (VA) Merit Review Awards (RR & D-1I01 RX000601 and BLR & D-5I01 BX000628) and United States Public Health grants (R01 CA66163). LYWB is a VA senior research career scientist.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2002;55:74–108.CrossRefGoogle Scholar
  2. 2.
    Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359:1143–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Pfister DG, et al. Head and neck cancers. J Natl Compr Cancer Netw. 2011;9:596–649.CrossRefGoogle Scholar
  5. 5.
    Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385:307–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res. 2010;70:9969–78.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krishnamurthy S, Nör JE. Head and neck cancer stem cells. J Dent Res. 2012;91:334–40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-CD44v3 interaction with OCT4-SOX2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2012;287:32800–24.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shiina M, Bourguignon LY. Selective activation of cancer stem cells by size-specific hyaluronan in head and neck cancer. Int J Cell Biol. 2015;989070.  https://doi.org/10.1155/2015/989070.
  10. 10.
    Bourguignon LY, Wong G, Shiina M. Up-regulation of histone methyltransferase, DOT1L, by matrix hyaluronan promotes microRNA-10 expression leading to tumor cell invasion and chemoresistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2016;291:10571–85.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bourguignon LY, Shiina M, Li JJ. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv Cancer Res. 2014;123:255–75.CrossRefPubMedGoogle Scholar
  12. 12.
    Sobreira TJ, Marlétaz F, Simões-Costa M, Schechtman D, Pereira AC, Brunet F, et al. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid dependent axial patterning in metazoans. Proc Natl Acad Sci U S A. 2011;108:226–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Franzmann EJ, Weed DT, Civantos FJ, Goodwin WJ, Bourguignon LY. A novel CD44v3 isoform is involved in head and neck squamous cell carcinoma progression. Otolaryngol Head Neck Surg. 2001;124:426–32.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang SJ, Wreesmann VB, Bourguignon LY. Association of CD44v3-containing isoforms with tumor cell growth, migration, matrix metalloproteinase expression, and lymph node metastasis in head and neck cancer. Head Neck. 2007;29:550–8.CrossRefGoogle Scholar
  15. 15.
    Wang SJ, Wong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope. 2009;119:1518–30.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang SJ, Bourguignon LY. Role of hyaluronan-mediated CD44 signaling in head and neck squamous cell carcinoma progression and chemoresistance. Am J Pathol. 2011;178:956–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA coding the lymphocyte homing receptor CD44 reveals 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992;89:12160–4.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Screaton GR, Bell MV, Bell JI, Jackson DG. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human and rat. J Biol Chem. 1993;268:12235–8.PubMedGoogle Scholar
  19. 19.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Borovski T, De Souza E, Melo F, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res. 2011;71:634–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol. 2010;222:268–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Haylock DN, Nilsson SK. The role of hyaluronic acid in hemopoietic stem cell biology. Regen Med. 2006;1:437–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Astachov L, Vago R, Aviv M, Nevo Z. Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone. Front Biosci. 2011;16:261–76.CrossRefGoogle Scholar
  24. 24.
    Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol. 1993;122:257–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Yeo TK, Nagy JA, Yeo KT, Dvorak HF, Toole BP. Increased hyaluronan at sites of attachment to mesentery by CD44-positive mouse ovarian and breast tumor cells. Am J Pathol. 1996;148:1733–40.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Toole BP. Proteoglycans and hyaluronan in morphogenesis and differentiation. In: Hay ED, editor. Cell biology of extracellular matrix. New York: Plenum Press; 1991. p. 305–34.CrossRefGoogle Scholar
  27. 27.
    Lee JY, Spicer AP. Hyaluronan: a multifunctional, megadalton, stealth molecule. Curr Opin Cell Biol. 2000;12:581–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Toole BP, Wight T, Tammi M. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem. 2002;277:4593–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Weigel PH, Hascall VC, Tammi K. Hyaluronan synthases. J Biol Chem. 1997;272:13997–4000.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang L, Underhill CB, Chen L. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res. 1995;55:428–33.PubMedGoogle Scholar
  31. 31.
    Bourguignon LY, Gilad E, Peyrollier K. Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration. J Biol Chem. 2007;282:19426–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang SJ, Earle C, Wong G, Bourguignon LY. Role of hyaluronan synthase 2 to promote CD44-dependent oral cavity squamous cell carcinoma progression. Head Neck. 2013;35:511–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer. 2003;106:438–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Christopoulos TA, Papageorgakopoulou N, Theocharis DA, Mastronikolis NS, Papadas TA, Vynios DH. Hyaluronidase and CD44 hyaluronan receptor expression in squamous cell laryngeal carcinoma. Biochim Biophys Acta. 2006;1760:1039–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Godin DA, Fitzpatrick PC, Scandurro AB, Belafsky PC, Woodworth BA, Amedee RG, et al. PH20: a novel tumor marker for laryngeal cancer. Arch Otolaryngol Head Neck Surg. 2000;126:402–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Mack B, Gires O. CD44s and CD44v6 expression in head and neck epithelia. PLoS One. 2008;3:e3360.  https://doi.org/10.1371/journal.pone.0003360.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bourguignon LY. Matrix hyaluronan promotes specific MicroRNA upregulation leading to drug resistance and tumor progression. Int J Mol Sci. 2016;17:517–27.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stojkovic P, Hyslop L, Anyfantis G, Herbert M, Murdoch AP, Stojkovic M, Lako M. Putative role of hyaluronan and its related genes, HAS2 and RHAMM, in human early preimplantation embryogenesis and embryonic stem cell characterization. Stem Cells. 2007;25:3045–57.CrossRefPubMedGoogle Scholar
  40. 40.
    Wheatley SC, Isacke CM. Induction of a hyaluronan receptor, CD44, during embryonal carcinoma and embryonic stem cell differentiation. Cell Adhes Commun. 1995;3:217–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Reategui EP, de Mayolo AA, Das PM, Astor FC, Singal R, Hamilton KL, Goodwin WJ, Carraway KL, Franzmann EJ. Characterization of CD44v3-containing isoforms in head and neck cancer. Cancer Biol Ther. 2006;5:1163–8.CrossRefGoogle Scholar
  42. 42.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chikamatsu K, Ishii H, Takahashi G, Okamoto A, Moriyama M, Sakakura K, et al. Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells. Head Neck. 2012;34:336–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Suer I, Karatas OF, Yuceturk B, et al. Characterization of stem-like cells directly isolated from freshly resected laryngeal squamous cell carcinoma specimens. Curr Stem Cell Res Ther. 2014;9:347–53.CrossRefPubMedGoogle Scholar
  45. 45.
    Wu CP, Zhou L, Xie M, et al. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia. PLoS One. 2013;8:e65750.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang J, Wu Y, Gao W, Li F, Bo Y, Zhu M, Fu R, Liu Q, Wen S, Wang B. Identification and characterization of CD133+CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines. J Cancer. 2017;8:497–506.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang M, Kumar B, Piao L, Xie X, Schmitt A, Arradaza N, Cippola M, Old M, Agrawal A, Ozer E, et al. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2014;120:992–1001.  https://doi.org/10.1002/cncr.28538.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang M, Kumar B, Piao L, Xie X, Schmitt A, Arradaza N, Cippola M, Old M, Agrawal A, Ozer E, Schuller D, Teknos T, Pan Q. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2014;120:992–1001.CrossRefPubMedGoogle Scholar
  49. 49.
    Swanson MS, Kokot N, Sinha UK. The role of HPV in head and neck cancer stem cell formation and tumorigenesis. Cancers. 2016;8:24.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46:1271–7.CrossRefGoogle Scholar
  51. 51.
    Huang W-Y, Lin J-N, Hsieh J-T, Chou S-C, Lai C-H, Yun E-J, Lo U-G, Pong R-C, Lin J-H, Lin Y-H. Nanoparticle targeting CD44-positive cancer cells for site-specific drug delivery in prostate cancer therapy. ACS Appl Mater Interfaces. 2016;8:30722–34.CrossRefGoogle Scholar
  52. 52.
    Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release. 2015;205:144–54.CrossRefPubMedGoogle Scholar
  53. 53.
    Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23:605–18.CrossRefPubMedGoogle Scholar
  54. 54.
    Li YQ. Master stem cell transcription factors and signaling regulation. Cell Reprogram. 2010;12:3–13.  https://doi.org/10.1089/cell.2009.0033.CrossRefPubMedGoogle Scholar
  55. 55.
    Heng JC, Ng HH. Transcriptional regulation in embryonic stem cells. Adv Exp Med Biol. 2010;695:76–91.CrossRefPubMedGoogle Scholar
  56. 56.
    Habu N, Imanishi Y, Kameyama K, Shimoda M, Tokumaru Y, Sakamoto K, Fujii R, Shigetomi S, Otsuka K, Sato Y, Watanabe Y, Ozawa H, Tomita T, Fujii M, Ogawa K. Expression of Oct3/4 and Nanog in the head and neck squamous carcinoma cells and its clinical implications for delayed neck metastasis in stage I/II oral tongue squamous cell carcinoma. BMC Cancer. 2015;15:730.  https://doi.org/10.1186/s12885-015-1732-9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One. 2013;8:e56324.  https://doi.org/10.1371/journal.pone.0056324.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Kuroda T, Tada M, Kubota H, Kimura H, Hatano SY, Suemori H, Nakatsuji N, Tada T. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol. 2005;25:2475–85.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–2473.CrossRefGoogle Scholar
  62. 62.
    Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Stem cell marker (Nanog) and STAT3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31:149–60.CrossRefPubMedGoogle Scholar
  63. 63.
    Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, STAT3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem. 2009;284:26533–46.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang J, Wang X, Li M, Han J, Chen B, Wang B, Dai J. NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006;273:1723–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.CrossRefPubMedGoogle Scholar
  67. 67.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefGoogle Scholar
  68. 68.
    Loh PG, Yang HS, Walsh MA, Wang Q, Wang X, Cheng Z, Liu D, Song H. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J. 2009;28:274–85.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Do JT, Schöler HR. Cell-cell fusion as a means to establish pluripotency. Ernst Schering Res Found Workshop. 2006;60:35–45.CrossRefGoogle Scholar
  70. 70.
    Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12:1543–68.CrossRefPubMedGoogle Scholar
  71. 71.
    Gorin MA, Pan Q. Protein kinase C epsilon: an oncogene and emerging tumor biomarker. Mol Cancer. 2009;8:9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Stabel S, Parker PJ. Protein kinase C. Pharmacol Ther. 1991;51:71–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Steinberg R, Harari OA, Lidington EA, Boyle JJ, Nohadani M, Samarel AM, Ohba M, Haskard DO, Mason JC. A protein kinase Cepsilon-anti-apoptotic kinase signaling complex protects human vascular endothelial cells against apoptosis through induction of Bcl-2. J Biol Chem. 2007;282:32288–97.CrossRefPubMedGoogle Scholar
  74. 74.
    Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, Bowen F, Parker PJ, Filonenko VV, Gout IT, Sebire N, Marais R, Downward J, Seckl MJ. FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCɛ, B-Raf and S6K2. EMBO J. 2006;25:3078–88.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Basu A, Mohanty S, Sun B. Differential sensitivity of breast cancer cells to tumor necrosis factor-alpha: involvement of protein kinase C. Biochem Biophys Res Commun. 2001;280:883–91.CrossRefPubMedGoogle Scholar
  76. 76.
    Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–5.CrossRefPubMedGoogle Scholar
  77. 77.
    Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res. 2007;13:1362–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Pesce M, Schöler HR. Oct-4. Gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19:271–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Herr W, Cleary MA. The POU domain. Versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 1995;9:1679–93.CrossRefGoogle Scholar
  81. 81.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor OCT4. Cell. 1998;95:379–91.CrossRefGoogle Scholar
  82. 82.
    Wang X, Dai J. Concise review. Isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells. 2010;28:885–93.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 2009;18:1093–108.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off. With partners in the regulation of embryonic development. Trends Genet. 2000;16:182–7.CrossRefGoogle Scholar
  86. 86.
    Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R. SOX2 is important for two crucial processes in lung development. Branching morphogenesis and epithelial cell differentiation. Dev Biol. 2008;317:296–309.CrossRefPubMedGoogle Scholar
  88. 88.
    Dong C, Wilhelm D, Koopman P. Sox genes and cancer. Genome Res. 2004;105:442–7.CrossRefGoogle Scholar
  89. 89.
    Bourguignon LY. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia. 2001;6:287–97.CrossRefPubMedGoogle Scholar
  90. 90.
    Bourguignon LY. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol. 2008;18:251–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK. OCT4/SOX2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28:6426–38.CrossRefPubMedGoogle Scholar
  92. 92.
    Liu H, Deng S, Zhao Z, Zhang H, Xiao J, Song W, Gao F, Guan Y. OCT4 regulates the miR-302 cluster in P19 mouse embryonic carcinoma cells. Mol Biol Rep. 2011;38:2155–60.CrossRefPubMedGoogle Scholar
  93. 93.
    Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14:2115–24.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DT. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res. 2011;39:1054–65.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Misra S, Hascll V, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015.  https://doi.org/10.3389/fimmu.2015.00201.
  96. 96.
    Entwistle J, Zhang S, Yang B, Wong C, Li Q, Hall CL, et al. Characterization of the murine gene encoding the hyaluronan receptor RHAMM. Gene. 1995;163:233–238.  https://doi.org/10.1016/0378-119(95) 00398.
  97. 97.
    Turley EA, Noble PW, Bourguignon LY. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277:4589–92.CrossRefPubMedGoogle Scholar
  98. 98.
    Schmitts A, Barth TFE, Beyer E, et al. The tumor antigens RHAMM and G250/CAIX are expressed in head and neck squamous cell carcinomas and elicit specific CD8+ T cell responses. Int J Oncol. 2009;34:629–39.Google Scholar
  99. 99.
    Twarock S, Tammi MI, Savani RC, Fischer JW. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol Chem. 2010;285:23276–2384.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rao G, Du LCQ. Osteopontin, a possible modulator of cancer stem cells and their malignant niche. Oncoimmunology. 2013;2:e24169.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chien CY, Tsai HT, Su LJ, Chuang HC, Shiu LY, Huang CC, Fang FM, Yu CC, Su HT, Chen CH. Aurora-A signaling is activated in advanced stage of squamous cell carcinoma of head and neck cancer and requires osteopontin to stimulate invasive behavior. Oncotarget. 2014;5:2243–62.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Le QT, Sutphin PD, Raychaudhuri S, Yu SC, Terris DJ, Lin HS, Lum B, Pinto HA, Koong AC, Giaccia AJ. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003;9:59–67.PubMedGoogle Scholar
  103. 103.
    Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, et al. CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 1999;59:219–26.PubMedGoogle Scholar
  104. 104.
    Pio GM, Xia Y, Piaseczny MM, Chu JE, Allan AL. Soluble bone-derived osteopontin promotes migration and stem-like behavior of breast cancer cells. PLoS One. 2017;12:e0177640.  https://doi.org/10.1371/journal.pone.0177640. eCollection.
  105. 105.
    Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KV, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets. 2014;18:883–95.CrossRefPubMedGoogle Scholar
  106. 106.
    Ravindran G, Devaraj H. Aberrant expression of CD133 and musashi-1 in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head Neck. 2012;34:1129–35.CrossRefPubMedGoogle Scholar
  107. 107.
    Moon Y, Kim D, Sohn H, Lim W. Effect of CD133 overexpression on the epithelial-to-mesenchymal transition in oral cancer cell lines. Clin Exp Metastasis. 2016;33:487–96.CrossRefPubMedGoogle Scholar
  108. 108.
    Baillie R, Tan ST, Itinteang T. Cancer stem cells in oral cavity squamous cell carcinoma. Front Oncol. 2017;7:112.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Damek-Poprawa M, Volgina A, Korostoff J, Sollecito TP, Brose MS, O’Malley BW Jr, Akintoye SO, DiRienzo JM. Targeted inhibition of CD133+ cells in oral cancer cell lines. J Dent Res. 2011;90:638–45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.San Francisco Veterans Affairs Medical Center and Department of Medicine, University of California at San Francisco & Endocrine Unit (111N2)San FranciscoUSA

Personalised recommendations