Advertisement

Trabecular Bone Score in Overweight and Normal-Weight Young Women

  • Abdel-Jalil Berro
  • Marie-Louise Ayoub
  • Antonio PintiEmail author
  • Said Ahmaidi
  • Georges El Khoury
  • César El Khoury
  • Eddy Zakhem
  • Bernard Cortet
  • Rawad El Hage
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10814)

Abstract

The aim of this study was to compare Trabecular Bone Score (TBS) in overweight and normal-weight young women. This study included 14 overweight (BMI > 25 kg/m2) and 42 normal-weight (BMI < 25 kg/m2) young Lebanese women whose ages range from 18 to 32 years. Body composition, Bone Mineral Content (BMC), Bone Mineral Density (BMD), and lumbar spine (L1–L4) TBS were assessed by dual-energy X-ray asborptiometry (DXA). The DXA measurements were completed for the whole body (WB), the lumbar spine (L1–L4), the total hip (TH) and the femoral neck (FN). Physical activity, daily calcium intake, daily protein intake and sleep quality index were evaluated using validated questionnaires. Maximal oxygen consumption (VO2 max in l/mn) was measured whilst exercising on a bicycle ergometer using a specialized device. Weight, height, BMI, lean mass, fat mass, WB BMC, WB BMD, TH BMD and FN BMD were significantly higher in overweight women compared to normal-weight women. Trabecular Bone Score (TBS) was not significantly different between the two groups (overweight and normal-weight). In the whole population (n = 56), weight, height, BMI, lean mass and fat mass were positively correlated to BMC and BMD values but not to TBS values. VO2 max (l/mn) was positively correlated to BMC, BMD and TBS (p < 0.05). This study suggests that being overweight is not associated with higher trabecular bone score values in young women.

Keywords

DXA Body composition Bone microarchitecture Peak bone mass 

Notes

Acknowledgments

This study was supported by a grant from the research council of the University of Balamand, Lebanon. Moreover, we gratefully acknowledge Lina Rahmé El Hage for her help in improving the quality of this manuscript.

Conflicts of Interest

The authors state that they have no conflicts of interest.

References

  1. 1.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy: Osteoporosis prevention, diagnosis and therapy. JAMA 285, 785–795 (2001)Google Scholar
  2. 2.
    Russo, C.R., Lauretani, F., Seeman, E., et al.: Structural adaptations to bone loss in aging men and women. Bone 38(1), 112–118 (2006)CrossRefGoogle Scholar
  3. 3.
    El Hage, R., Jacob, C., Moussa, E., et al.: Relative importance of lean mass and fat mass on bone mineral density in a group of Lebanese postmenopausal women. J Clin. Densitom. 14(3), 326–331 (2011)CrossRefGoogle Scholar
  4. 4.
    Fonseca, H., Moreira-Gonçalves, D., Coriolano, H.J., et al.: Bone quality: the determinants of bone strength and fragility. Sports Med. 44(1), 37–53 (2014)CrossRefGoogle Scholar
  5. 5.
    Bousson, V., Bergot, C., Sutter, B., et al.: Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos. Int. 23(5), 1489–1501 (2012)CrossRefGoogle Scholar
  6. 6.
    Silva, B.C., Leslie, W.D., Resch, H., et al.: Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Miner. Res. 29(3), 518–530 (2014)CrossRefGoogle Scholar
  7. 7.
    Iki, M., Tamaki, J., Kadowaki, E., et al.: Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese population-based osteoporosis (JPOS) cohort study. J. Bone Miner. Res. 29(2), 399–407 (2014)CrossRefGoogle Scholar
  8. 8.
    Silva, B.C., Bilezikian, J.P.: Trabecular bone score: perspectives of an imaging technology coming of age. Arq. Bras. Endocrinol. Metabol. 58(5), 493–503 (2014)CrossRefGoogle Scholar
  9. 9.
    Silva, B.C., Broy, S.B., Boutroy, S., et al.: Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J. Clin. Densitom. 18(3), 309–330 (2015)CrossRefGoogle Scholar
  10. 10.
    Roux, J.P., Wegrzyn, J., Boutroy, S., et al.: The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos. Int. 24(9), 2455–2460 (2013)CrossRefGoogle Scholar
  11. 11.
    Krueger, D., Fidler, E., Libber, J., et al.: Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J. Clin. Densitom. 17(1), 60–65 (2014)CrossRefGoogle Scholar
  12. 12.
    Harvey, N.C., Glüer, C.C., Binkley, N., et al.: Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015)CrossRefGoogle Scholar
  13. 13.
    Leslie, W.D., Krieg, M.A., Hans, D., Manitoba Bone Density Program: Clinical factors associated with trabecular bone score. J. Clin. Densitom. 16(3), 374–379 (2013)CrossRefGoogle Scholar
  14. 14.
    Leslie, W.D., Aubry-Rozier, B., Lix, L.M., et al.: Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 67, 10–14 (2014)CrossRefGoogle Scholar
  15. 15.
    Leslie, W.D., Johansson, H., Kanis, J.A., et al.: Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos. Int. 25(9), 2271–2277 (2014)CrossRefGoogle Scholar
  16. 16.
    Hans, D., Goertzen, A., Krieg, M.A., et al.: Bone microarchitecture assessed by TBS predicts hip, clinical spine and all osteoporotic fractures independently of BMD in 22234 women aged 50 and older: the Manitoba prospective study. J. Bone Miner. Res. 26(11), 2762–2769 (2011)CrossRefGoogle Scholar
  17. 17.
    Donaldson, A.A., Feldman, H.A., O’Donnell, J.M., et al.: Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 100(9), 3436–3442 (2015)CrossRefGoogle Scholar
  18. 18.
    El Hage, R., Bachour, F., Sebaaly, A., et al.: The influence of weight status on radial bone mineral density in Lebanese women. Calcif. Tissue Int. 94(4), 465–467 (2014)CrossRefGoogle Scholar
  19. 19.
    El Hage, R., Bachour, F., Khairallah, W., et al.: Lumbar spine bone mineral density in obese, overweight, and normal-weight Lebanese postmenopausal women. J. Clin. Densitom. 17(1), 215–216 (2014)CrossRefGoogle Scholar
  20. 20.
    El Hage, R., El Hage, Z., Moussa, E., et al.: Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent girls. J. Clin. Densitom. 16(3), 313–319 (2013)CrossRefGoogle Scholar
  21. 21.
    El Hage, R., Bachour, F., Khairallah, W., et al.: The influence of obesity and overweight on hip bone mineral density in Lebanese women. J. Clin. Densitom. 17(1), 216–217 (2014)CrossRefGoogle Scholar
  22. 22.
    El Hage, R., Khairallah, W., Bachour, F., et al.: Influence of age, morphological characteristics, and lumbar spine bone mineral density on lumbar spine trabecular bone score in Lebanese women. J. Clin. Densitom. 17(3), 434–435 (2014)CrossRefGoogle Scholar
  23. 23.
    Zakhem, E., Ayoub, M.L., Zunquin, G., et al.: Physical performance and trabecular bone score in a group of young lebanese women. J. Clin. Densitom. 18(2), 271–272 (2015)CrossRefGoogle Scholar
  24. 24.
    Cole, T.J., Bellizzi, M.C., Flegal, K.M., et al.: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244), 1240–1243 (2000)CrossRefGoogle Scholar
  25. 25.
    El Hage, R., Zakhem, E., Theunynck, D., et al.: Maximal oxygen consumption and bone mineral density in a group of young Lebanese adults. J. Clin. Densitom. 17(2), 320–324 (2014)CrossRefGoogle Scholar
  26. 26.
    Deheeger, M., Rolland-Cachera, M.F., Fontvieille, A.M.: Physical activity and body composition in 10 year old French children: linkages with nutritional intake? Int. J. Obes. Relat. Metab. Disord. 21, 372–379 (1997)CrossRefGoogle Scholar
  27. 27.
    Fardellone, P., Sebert, J.L., Bouraya, M., et al.: Evaluation of the calcium content of diet by frequential self-questionnaire. Rev. Rhum. Mal. Osteoartic. 58, 99–103 (1991)Google Scholar
  28. 28.
    Morin, P., Herrmann, F., Ammann, P., et al.: A rapid self-administered food frequency questionnaire for the evaluation of dietary protein intake. Clin. Nutr. 24, 768–774 (2005)CrossRefGoogle Scholar
  29. 29.
    Buysse, D.J., Reynolds 3rd, C.F., Monk, T.H., et al.: The pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 28, 193–213 (1989)CrossRefGoogle Scholar
  30. 30.
    Bonjour, J.P., Chevalley, T., Ferrari, S., et al.: The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 51(1 Suppl.), S5–S17 (2009)Google Scholar
  31. 31.
    Bonjour, J.P., Chevalley, T., Rizzoli, R., et al.: Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med. Sport Sci. 51, 64–80 (2007)CrossRefGoogle Scholar
  32. 32.
    Zakhem, E., El Hage, R., Zunquin, G., et al.: Sleep quality is a determinant of hip bone mineral density in a group of young Lebanese men. J. Med. Liban. 62(4), 213–216 (2014)Google Scholar
  33. 33.
    Albayrak, I., Aydogmus, M., Ozerbil, O.M., et al.: The association between bone mineral density, quality of life, quality of sleep and fatigue. Acta Clin. Belg. 71(2), 92–98 (2016).  https://doi.org/10.1179/2295333715Y.0000000061CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdel-Jalil Berro
    • 6
  • Marie-Louise Ayoub
    • 1
    • 2
    • 3
  • Antonio Pinti
    • 5
    Email author
  • Said Ahmaidi
    • 6
  • Georges El Khoury
    • 1
    • 4
  • César El Khoury
    • 1
    • 5
  • Eddy Zakhem
    • 1
  • Bernard Cortet
    • 2
    • 3
  • Rawad El Hage
    • 1
  1. 1.Department of Physical Education, Faculty of Arts and Social SciencesUniversity of BalamandEl-KouraLebanon
  2. 2.University Lille (ULCO, USTL, Lille 2)LilleFrance
  3. 3.Physiopathology of Inflammatory Bone Diseases, EA 4490Boulogne sur MerFrance
  4. 4.Laboratoire VIP’S, UFR-APS, Campus la HarpeUniversité Rennes 2RennesFrance
  5. 5.I3MTO, EA 4708Université d’OrléansOrléans, Cedex 1France
  6. 6.Université de Picardie Jules VerneAmiens, Cedex 1France

Personalised recommendations