Modeling Spread of Infectious Diseases at the Arrival Stage of Hajj

  • Sultanah M. AlshammariEmail author
  • Armin R. Mikler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10814)


During the 2009 H1N1 influenza pandemic, there was rising concern about the potential contribution of international travel and global mass gatherings on the dynamic of the virus. The travel patterns after global mass gatherings can cause a rapid spread of infections. Studying the impact of travel patterns, high population density, and social mixing on disease transmission in these events could help public health authorities assess the risk of global epidemics and evaluate various prevention measures. There have been many studies on computational modeling of epidemic spread in various settings, but few of them address global mass gatherings. In this paper, we develop a stochastic susceptible-exposed-infected-recovered agent-based model to predict early stage of a disease epidemic among international participants in the annual Hajj or pilgrimage to Makkah (also called Mecca). The epidemic model is used to explore several scenarios with initial reproduction number R0 range from 1.3 to 1.7, and various initial proportions of infections range from 0.5% to 1% of total arriving pilgrims. Following an epidemic with one infectious per flight, the model results predict an average of 30% infectious and 20% exposed individuals in Makkah by the end of the arrival period. The proposed model can be used to assess various intervention measures during the arrival of international participants to control potential epidemics in different global mass gatherings.


Global mass gatherings Disease control Infectious diseases Epidemic Outbreak Agent-based model Hajj 


  1. 1.
    Abubakar, I., Gautret, P., Brunette, G.W., Blumberg, L., Johnson, D., Poumerol, G., Memish, Z.A., Barbeschi, M., Khan, A.S.: Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet. Infect. Dis. 12(1), 66–74 (2012)CrossRefGoogle Scholar
  2. 2.
    Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J.J., Merler, S., Vespignani, A.: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis. 10(1), 190 (2010)CrossRefGoogle Scholar
  3. 3.
    Al-Tawfiq, J.A., Gautret, P., Benkouiten, S., Memish, Z.A.: Mass gatherings and the spread of respiratory infections. Lessons from the Hajj. Ann. Am. Thorac. Soc. 13(6), 759–765 (2016)CrossRefGoogle Scholar
  4. 4.
    Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model. J. Comput. Sci. 1(3), 132–145 (2010)CrossRefGoogle Scholar
  5. 5.
    Boëlle, P.Y., Ansart, S., Cori, A., Valleron, A.J.: Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respir. Viruses 5(5), 306–316 (2011)CrossRefGoogle Scholar
  6. 6.
    Carley, K.M., Fridsma, D.B., Casman, E., Yahja, A., Altman, N., Chen, L.C., Kaminsky, B., Nave, D.: BioWar: scalable agent-based model of bioattacks. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 36(2), 252–265 (2006)CrossRefGoogle Scholar
  7. 7.
    Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), e1000656 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chowell, G., Nishiura, H., Viboud, C.: Modeling rapidly disseminating infectious disease during mass gatherings. BMC Med. 10(1), 159 (2012)CrossRefGoogle Scholar
  9. 9.
    Coburn, B.J., Wagner, B.G., Blower, S.: Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Med. 7(1), 30 (2009)CrossRefGoogle Scholar
  10. 10.
    Dridi, M.H.: Tracking individual targets in high density crowd scenes analysis of a video recording in Hajj 2009. Curr. Urban Stud. 3, 35–53 (2015)CrossRefGoogle Scholar
  11. 11.
    Fiore, A.E., Fry, A., Shay, D., Gubareva, L., Bresee, J.S., Uyeki, T.M., Centers for Disease Control and Prevention (CDC), et al.: Antiviral agents for the treatment and chemoprophylaxis of influenza: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 60(1), 1–24 (2011)Google Scholar
  12. 12.
    Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Hollingsworth, T.D., Griffin, J., Baggaley, R.F., Jenkins, H.E., Lyons, E.J., et al.: Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324(5934), 1557–1561 (2009)CrossRefGoogle Scholar
  13. 13.
    Hu, H., Nigmatulina, K., Eckhoff, P.: The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 244(2), 125–134 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khan, K., Arino, J., Hu, W., Raposo, P., Sears, J., Calderon, F., Heidebrecht, C., Macdonald, M., Liauw, J., Chan, A., et al.: Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med. 361(2), 212–214 (2009)CrossRefGoogle Scholar
  15. 15.
    Memish, Z.A., Zumla, A., Alhakeem, R.F., Assiri, A., Turkestani, A., Al Harby, K.D., Alyemni, M., Dhafar, K., Gautret, P., Barbeschi, M., et al.: Hajj: infectious disease surveillance and control. Lancet 383(9934), 2073–2082 (2014)CrossRefGoogle Scholar
  16. 16.
    Morse, S.S.: Factors in the emergence of infectious diseases. In: Price-Smith, A.T. (ed.) Plagues and Politics. GIS, pp. 8–26. Palgrave Macmillan UK, London (2001). Scholar
  17. 17.
    Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), e74 (2008)CrossRefGoogle Scholar
  18. 18.
    Patlolla, P., Gunupudi, V., Mikler, A.R., Jacob, R.T.: Agent-based simulation tools in computational epidemiology. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.) IICS 2004. LNCS, vol. 3473, pp. 212–223. Springer, Heidelberg (2006). Scholar
  19. 19.
    Perez, L., Dragicevic, S.: An agent-based approach for modeling dynamics of contagious disease spread. Int. J. Health Geogr. 8(1), 50 (2009)CrossRefGoogle Scholar
  20. 20.
    Shi, P., Keskinocak, P., Swann, J.L., Lee, B.Y.: The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model. BMC Public Health 10(1), 778 (2010)CrossRefGoogle Scholar
  21. 21.
    Steffen, R., Bouchama, A., Johansson, A., Dvorak, J., Isla, N., Smallwood, C., Memish, Z.A.: Non-communicable health risks during mass gatherings. Lancet. Infect. Dis. 12(2), 142–149 (2012)CrossRefGoogle Scholar
  22. 22.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.F., Khanafer, N., Van den Broeck, W., et al.: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(1), 87 (2011)CrossRefGoogle Scholar
  23. 23.
    Tabatabaei, S.M., Metanat, M., et al.: Mass gatherings and infectious diseases epidemiology and surveillance. Int. J. Infect. 2(2) (2015)Google Scholar
  24. 24.
    Tanaka, G., Urabe, C., Aihara, K.: Random and targeted interventions for epidemic control in metapopulation models. Sci. Rep. 4, 5522 (2014)CrossRefGoogle Scholar
  25. 25.
    Tian, D., Liu, C., Sheng, Z., Chen, M., Wang, Y.: Analytical model of spread of epidemics in open finite regions. IEEE Access 5, 9673–9681 (2017)CrossRefGoogle Scholar
  26. 26.
    Tuite, A.R., Greer, A.L., Whelan, M., Winter, A.L., Lee, B., Yan, P., Wu, J., Moghadas, S., Buckeridge, D., Pourbohloul, B., et al.: Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Can. Med. Assoc. J. 182(2), 131–136 (2010)CrossRefGoogle Scholar
  27. 27.
    Yang, Y., Sugimoto, J.D., Halloran, M.E., Basta, N.E., Chao, D.L., Matrajt, L., Potter, G., Kenah, E., Longini, I.M.: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 326(5953), 729–733 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations