Advertisement

Classification of Breast Cancer Histopathological Images Using KAZE Features

  • Daniel Sanchez-MorilloEmail author
  • Jesús González
  • Marcial García-Rojo
  • Julio Ortega
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10814)

Abstract

Breast cancer (BC) is a public health problem of first importance, being the second most common cancer worldwide. BC represents 30.4% of all new cancer cases in the European female population. The diagnosis and differential diagnosis of BC is based on the clinical presentations, physical examinations combined with imaging studies, and confirmed by histopathologic findings. Pathologists’ examination is a time-consuming analysis, susceptible to an interpretation bias mainly caused by the experience of the pathologist and the decrease of attention due to fatigue. Currently, computer-aided detection and diagnosis techniques applied to digital images are assisting the specialists.

In this work, the performance of a pattern recognition system based on KAZE features in combination with Bag-of-Features (BOF) to discriminate between benign and malignant tumours is evaluated on the BreakHis database (7909 images). During the training stage, KAZE keypoints are extracted for every image in the training set. Keypoints are mapped into a histogram vector using K-means clustering. This histogram represents the input to build a binary SVM classifier. In the testing stage, the KAZE keypoints are extracted for every image in the test set, and fed into the cluster model to map them into a histogram vector. This vector is finally fed into the binary SVM training classifier to classify the image.

The experimental evaluation shows the feasibility and effectiveness, in terms of classification accuracy, of the proposed scheme for the binary classification of breast cancer histopathological images with a low magnification factor.

Keywords

Breast cancer Histopathology Image classification Medical imaging KAZE Bag of features 

Notes

Acknowledgement

This work was supported by grant TIN2015-67020-P (Spanish “Ministerio de Economía y Competitividad and FEDER funds).

References

  1. 1.
    World Cancer Research Fund International: Cancer facts and figures - Worldwide data. http://www.wcrf.org/int/cancer-facts-figures/worldwide-data. Accessed 18 Jan 2018
  2. 2.
    Parks, R.M., Derks, M.G.M., Bastiaannet, E., Cheung, K.L.: Breast cancer epidemiology. In: Wyld, L., Markopoulos, C., Leidenius, M., Senkus-Konefka, E. (eds.) Breast Cancer Management for Surgeons, pp. 19–29. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-56673-3_3CrossRefGoogle Scholar
  3. 3.
    Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J.W.W., Comber, H., Forman, D., Bray, F.: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013)CrossRefGoogle Scholar
  4. 4.
    World Health Organization: Breast cancer: prevention and control. http://who.int/cancer/detection/breastcancer/en/index1.html. Accessed 18 Jan 2018
  5. 5.
    Senkus, E., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rutgers, E., Zackrisson, S., Cardoso, F.: Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26, v8–v30 (2015)CrossRefGoogle Scholar
  6. 6.
    Veta, M., Pluim, J.P.W., Van Diest, P.J., Viergever, M.A.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61, 1400–1411 (2014)CrossRefGoogle Scholar
  7. 7.
    Aswathy, M.A., Jagannath, M.: Detection of breast cancer on digital histopathology images: present status and future possibilities. Inform. Med. Unlocked 8, 74–79 (2017)CrossRefGoogle Scholar
  8. 8.
    Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)CrossRefGoogle Scholar
  9. 9.
    Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63, 1455–1462 (2016)CrossRefGoogle Scholar
  10. 10.
    Wang, P., Hu, X., Li, Y., Liu, Q., Zhu, X.: Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Sig. Process. 122, 1–13 (2016)CrossRefGoogle Scholar
  11. 11.
    Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43, 1563–1572 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhang, Y., Zhang, B., Coenen, F., Lu, W.: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl. 24, 1405–1420 (2013)CrossRefGoogle Scholar
  13. 13.
    Zheng, Y., Jiang, Z., Shi, J., Ma, Y.: Retrieval of pathology image for breast cancer using PLSA model based on texture and pathological features. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2304–2308. IEEE (2014)Google Scholar
  14. 14.
    Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: International Joint Conference on Neural Networks (IJCNN 2016), pp. 2560–2567 (2016)Google Scholar
  15. 15.
    Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Madabhushi, A.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Presented at the 20 March 2014Google Scholar
  16. 16.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006).  https://doi.org/10.1007/11744023_32CrossRefGoogle Scholar
  18. 18.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)Google Scholar
  19. 19.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)Google Scholar
  21. 21.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp. 886–893 (2005)Google Scholar
  22. 22.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)CrossRefGoogle Scholar
  23. 23.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)Google Scholar
  24. 24.
    Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33783-3_16CrossRefGoogle Scholar
  25. 25.
    Demchev, D., Volkov, V., Kazakov, E., Sandven, S.: Feature tracking for sea ice drift retrieval from SAR images. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 330–333. IEEE (2017)Google Scholar
  26. 26.
    Inoue, R., Goto, T., Hirano, S.: Authenticity inspection by image recognition using feature point matching. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–2. IEEE (2017)Google Scholar
  27. 27.
    Utaminingrum, F., Kumiawan, T.A., Fauzi, M.A., Wihandika, R.C., Adikara, P.P.: Adaptive human tracking for smart wheelchair. In: 5th International Symposium on Computational and Business Intelligence, ISCBI 2017, pp. 10–13 (2017)Google Scholar
  28. 28.
    Chen, Y.S., Chien, J.C., Lee, J.D.: KAZE-BOF-based large vehicles detection at night. In: 2016 International Conference on Communication Problem-Solving, ICCP 2016, pp. 2–3 (2016)Google Scholar
  29. 29.
    Spanhol, F.A., Cavalin, P.R., Oliveira, L.S., Petitjean, C., Heutte, L.: Deep features for breast cancer histopathological image classification. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1868–1873 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomedical Engineering and Telemedicine Research GroupUniversity of CadizCadizSpain
  2. 2.Department of Automation, Electronics and Computers and Network ArchitectureUniversity of CadizCadizSpain
  3. 3.Department of Computer Architecture and TechnologyCITIC, University of GranadaGranadaSpain
  4. 4.University Hospital Puerta del Mar of Cadiz CádizCadizSpain

Personalised recommendations