Understanding Embodied Cognition by Building Models of Minimal Life
Abstract
A novel scenario is emerging from the synthetic biology advancements of the last fifteen years. We refer to a well-defined multidisciplinary sci-tech arena dedicated to the construction of biological-like systems, and, in particular, microscopic cell-like systems. The challenge of assembling a minimal cell from separated parts is generally considered the Holy Grail of biology. However, an accurate analysis of this emerging line of research, grounded in the theory of autopoiesis and its implications, is able to show its potentially high relevance for two other fields – artificial life and artificial intelligence. In this paper we intend to propose this perspective. Based on the critical discussion of recent trends and experimental results in synthetic biology, we sketch out how current research in this field can impact not only artificial life, but also artificial intelligence inquiries, in particular with respect to embodied cognition.
Notes
Acknowledgments
The authors thank Pier Luigi Luisi (Roma Tre University and ETH Zürich) for inspiring discussions. This work has been stimulated by our involvement in the European COST Action CM-1304 “Emergence and Evolution of Complex Chemical Systems” and TD-1308 “Origins and evolution of life on Earth and in the Universe (ORIGINS)”.
References
- 1.Adamala, K.P., Martin-Alarcon, D.A., Guthrie-Honea, K.R., Boyden, E.S.: Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9(5), 431–439 (2017)CrossRefGoogle Scholar
- 2.Bachmann, P.A., Walde, P., Luisi, P.L., Lang, J.: Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc. 112(22), 8200–8201 (1990)CrossRefGoogle Scholar
- 3.Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)CrossRefGoogle Scholar
- 4.Bich, L., Damiano, L.: Life, autonomy and cognition: an organizational approach to the definition of the universal properties of life. Orig. Life Evol. Biosph. 42, 389–397 (2012)CrossRefGoogle Scholar
- 5.Blain, J.C., Szostak, J.W.: Progress toward synthetic cells. Annu. Rev. Biochem. 83(1), 615–640 (2014)CrossRefGoogle Scholar
- 6.Bracciali, A., Cataldo, E., Damiano, L., Felicioli, C., Marangoni, R., Stano, P.: From cells as computation to cells as apps. In: Gadducci, F., Tavosanis, M. (eds.) HaPoC 2015. IAICT, vol. 487, pp. 116–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47286-7_8CrossRefGoogle Scholar
- 7.Cordeschi, R.: The Discovery of the Artificial. Springer, Heidelberg (2002). https://doi.org/10.1007/978-94-015-9870-5CrossRefGoogle Scholar
- 8.Cronin, L., Krasnogor, N., Davis, B.G., Alexander, C., Robertson, N., Steinke, J.H.G., Schroeder, S.L.M., Khlobystov, A.N., Cooper, G., Gardner, P.M., Siepmann, P., Whitaker, B.J., Marsh, D.: The imitation game–a computational chemical approach to recognizing life. Nat. Biotechnol. 24(10), 1203–1206 (2006)CrossRefGoogle Scholar
- 9.Damiano, L., Hiolle, A., Cañamero, L.: Grounding synthetic knowledge. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R. (eds.) Advances in Artificial Life, ECAL 2011, pp. 200–207. MIT Press, Cambridge (2011)Google Scholar
- 10.Damiano, L.: Co-emergences in life and science: a double proposal for biological emergentism. Synthese 185(2), 273–294 (2012)MathSciNetCrossRefGoogle Scholar
- 11.Damiano, L., Kuruma, Y., Stano, P.: What can synthetic biology offer to artificial intelligence (and vice versa)? Biosystems 148, 1–3 (2016)CrossRefGoogle Scholar
- 12.Dreyfus, H.L.: What Computers Can’t Do: The Limits of Artificial Intelligence. Harper and Row, New York (1979). Revised editionGoogle Scholar
- 13.Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)CrossRefGoogle Scholar
- 14.Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)CrossRefGoogle Scholar
- 15.Froese, T., Ziemke, T.: Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif. Intell. 173(3), 466–500 (2009)CrossRefGoogle Scholar
- 16.Gardner, P.M., Winzer, K., Davis, B.G.: Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1(5), 377–383 (2009)CrossRefGoogle Scholar
- 17.Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–341 (2000)CrossRefGoogle Scholar
- 18.Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
- 19.Hoffmann, P.M.: Life’s Ratchet: How Molecular Machines Extract Order from Chaos, 1st edn. Basic Books. A Member of the Perseus Books Group, New York (2012)Google Scholar
- 20.Ichihashi, N., Matsuura, T., Kita, H., Sunami, T., Suzuki, H., Yomo, T.: Constructing partial models of cells. Cold Spring Harb. Perspect. Biol. 2(6), a004945 (2010)CrossRefGoogle Scholar
- 21.Kaneko, K.: Life: An Introduction to Complex Systems Biology. Understanding Complex Systems. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-32667-0CrossRefMATHGoogle Scholar
- 22.Langton, C.G.: Artificial life. In: Boden, M.A. (ed.) The Philosophy of Artifcial Life, pp. 39–94. Oxford University Press, Oxford (1996)Google Scholar
- 23.LeDuc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2, 3–7 (2007)CrossRefGoogle Scholar
- 24.Lentini, R., Martín, N.Y., Forlin, M., Belmonte, L., Fontana, J., Cornella, M., Martini, L., Tamburini, S., Bentley, W.E., Jousson, O., Mansy, S.S.: Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3(2), 117–123 (2017)CrossRefGoogle Scholar
- 25.Lentini, R., Santero, S.P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., Del Bianco, C., Terrell, J.L., Spencer, A.C., Martini, L., Forlin, M., Assfalg, M., DallaSerra, M., Bentley, W.E., Mansy, S.S.: Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014)CrossRefGoogle Scholar
- 26.de Lorenzo, V., Danchin, A.: Synthetic biology: discovering new worlds and new words. EMBO Rep. 9(9), 822–827 (2008)CrossRefGoogle Scholar
- 27.Luisi, P.L., Ferri, F., Stano, P.: Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006)CrossRefGoogle Scholar
- 28.Luisi, P.L., Walde, P., Oberholzer, T.: Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4(1), 33–39 (1999)CrossRefGoogle Scholar
- 29.Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90(2), 49–59 (2003)Google Scholar
- 30.Luisi, P.L.: The synthetic approach in biology: epistemological notes for synthetic biology. In: Luisi, P.L., Chiarabelli, C. (eds.) Chemical Synthetic Biology, pp. 343–362. Wiley, Chichester (2011)Google Scholar
- 31.Luisi, P., Varela, F.: Self-replicating micelles - a chemical version of a minimal autopoietic system. Orig. Life Evol. Biosph. 19, 633–643 (1989)CrossRefGoogle Scholar
- 32.Maturana, H.R., Varela, F.J.: Autopoiesis and Cognition: The Realization of the Living, 1st edn. D. Reidel Publishing Company, Dordrecht (1980)CrossRefGoogle Scholar
- 33.Maturana, H.R., Varela, F.J.: De máquinas y seres vivos: Una teoría de la organizacíon Biológica. Editorial Universitaria, Santiago (1972)Google Scholar
- 34.Mavelli, F., Rampioni, G., Damiano, L., Messina, M., Leoni, L., Stano, P.: Molecular communication technology: general considerations on the use of synthetic cells and some hints from in silico modelling. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 169–189. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12745-3_14Google Scholar
- 35.Morange, M.: A critical perspective on synthetic biology. Hyle 15(1), 21–30 (2009)Google Scholar
- 36.Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communications. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
- 37.Nakano, T., Moore, M., Enomoto, A., Suda, T.: Molecular communication technology as a biological ICT. In: Sawai, H. (ed.) Biological Functions for Information and Communication Technologies. Studies in Computational Intelligence, vol. 320, pp. 49–86. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15102-6_2CrossRefGoogle Scholar
- 38.O’Malley, M.A.: Making knowledge in synthetic biology: design meets kludge. Biol. Theory 4(4), 378–389 (2009)CrossRefGoogle Scholar
- 39.Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
- 40.Rampioni, G., D’Angelo, F., Messina, M., Zennaro, A., Kuruma, Y., Tofani, D., Leoni, L., Stano, P.: Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem. Commun. 54(17), 2090–2093 (2018)CrossRefGoogle Scholar
- 41.Rampioni, G., Mavelli, F., Damiano, L., D’Angelo, F., Messina, M., Leoni, L., Stano, P.: A synthetic biology approach to bio-chem-ICT: first moves towards chemical communication between synthetic and natural cells. Nat. Comput. 13, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
- 42.Rosenblueth, A., Wiener, N., Bigelow, J.: Behavior, purpose and teleology. Philos. Sci. 10, 18–24 (1943)CrossRefGoogle Scholar
- 43.Searle, J.: Minds, brains, and programmes. Behav. Brain Sci. 3, 417–424 (1980)CrossRefGoogle Scholar
- 44.Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., Ueda, T.: Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19(8), 751–755 (2001)CrossRefGoogle Scholar
- 45.Stano, P., Kuruma, Y., Damiano, L.: Synthetic biology and (embodied) artificial intelligence: opportunities and challenges. Adapt. Behavior 26(1), 41–44 (2018)CrossRefGoogle Scholar
- 46.Stano, P.: The birth of liposome-based synthetic biology: a brief account. In: Pearson, B.R. (ed.) Liposomes: Historical, Clinical and Molecular Perspectives, pp. 37–52. Nova Science Publishers, Inc. (2017)Google Scholar
- 47.Stano, P., Carrara, P., Kuruma, Y., de Souza, T.P., Luisi, P.L.: Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem. 21, 18887–18902 (2011)CrossRefGoogle Scholar
- 48.Stano, P., Mavelli, F.: Protocells models in origin of life and synthetic biology. Life 5(4), 1700–1702 (2015)CrossRefGoogle Scholar
- 49.Stano, P., Rampioni, G., Carrara, P., Damiano, L., Leoni, L., Luisi, P.L.: Semi-synthetic minimal cells as a tool for biochemical ICT. Bio Syst. 109(1), 24–34 (2012)Google Scholar
- 50.Tang, T.Y.D., Cecchi, D., Fracasso, G., Accardi, D., Coutable-Pennarun, A., Mansy, S.S., Perriman, A.W., Anderson, J.L.R., Mann, S.: Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7(2), 339–346 (2018)CrossRefGoogle Scholar
- 51.Varela, F.J., Thompson, E.T., Rosch, E.: The Embodied Mind: Cognitive Science and Human Experience. The MIT Press, Cambridge (1992). New editionGoogle Scholar
- 52.Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.: Autopoietic self-reproduction of fatty-acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994)CrossRefGoogle Scholar
- 53.Ziemke, T.: The body of knowledge: on the role of the living body in grounding embodied cognition. Biosystems 148(Suppl. C), 4–11 (2016)CrossRefGoogle Scholar