Advertisement

Innate Immune Recognition Molecules

  • Walter Gottlieb Land
Chapter

Abstract

A typical feature of all mobile and sessile cells of the innate immune system refers to the expression of pattern recognition molecules which provide them with the unique property to sense and respond to any cell stress/tissue injury, be it of infectious or sterile nature. The process is based on the recognition of conserved structures of microbes known as microbe-molecular patterns or pathogen-associated molecular patterns and stress/injury-induced DAMPs emitted during any infectious or sterile cell stress/tissue injury. Part II presents a short introduction to the diversity of these recognition molecules which principally can be divided into cellular and soluble humoral molecules. Currently, several families of cell-bound pattern recognition molecules (PRMs) have been identified, including the well-characterized Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors, absent in melanoma 2-like receptors together with other cytosolic DNA sensors, and C-type lectin receptors. These “classical” PRMs are complemented by other families of (sometimes called) “non-classical” PRMs including scavenger receptors, purinergic receptors, G protein-coupled receptors, nociceptors, fragment crystallizable region receptors, and activating receptors of innate lymphoid cells. The briefly described soluble humoral PRMs include natural immunoglobulin M, complement fragment Cq1, pentraxins, ficolins, and collectins. The existence of such a plethora of various PRMs as here only modestly described identifies our innate immune system as an incredibly vast and broad-defined organ of perception that reacts upon any infectious/sterile injury with an adequately regulated innate immune response to restore and maintain homeostasis.

References

  1. 1.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404851 PubMedCrossRefGoogle Scholar
  2. 2.
    Hansen JD, Vojtech LN, Laing KJ. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol. 2011;35:886–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21241729 PubMedCrossRefGoogle Scholar
  3. 3.
    Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 2012;2:168. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23316484 PubMedGoogle Scholar
  4. 4.
    Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog. 2013;e1003417:9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23935480 Google Scholar
  5. 5.
    Lee EJ, Park JH. Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform. 2013;11:224–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24465234 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ratsimandresy RA, Dorfleutner A, Stehlik C. An update on PYRIN domain-containing pattern recognition receptors: from immunity to pathology. Front Immunol. 2013;4:440. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24367371 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 2013;218:1312–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23962476 PubMedCrossRefGoogle Scholar
  8. 8.
    Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;4:333. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24137163 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24655297 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Alessandra P, Sergio C. NOD-like receptors: a tail from plants to mammals through invertebrates. Curr Protein Pept Sci. 2017;18(4):311–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26983790 CrossRefGoogle Scholar
  11. 11.
    Sohn J, Hur S. Filament assemblies in foreign nucleic acid sensors. Curr Opin Struct Biol. 2016;37:134–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26859869 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8808632 CrossRefGoogle Scholar
  13. 13.
    Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9851930 CrossRefGoogle Scholar
  14. 14.
    The Nobel prize in physiology or medicine. 2011. Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2011/
  15. 15.
    Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9237759 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Uematsu S, Akira S. Toll-Like receptors (TLRs) and their ligands. Handb Exp Pharmacol. 2008;183:1–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18071652 CrossRefGoogle Scholar
  17. 17.
    Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7:a016246. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016246 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12:168–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22301850 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ulevitch RJ. Therapeutics targeting the innate immune system. Nat Rev Immunol. 2004;4:512–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15229470 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cai C, Shi X, Korff S, Zhang J, Loughran PA, Ruan X, et al. CD14 contributes to warm hepatic ischemia-reperfusion injury in mice. Shock. 2013;40:115–21. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00024382-201308000-00007 PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Land WG. Innate alloimmunity part 1. Innate immunity and host defense. Baskent University, Ankara; Pabst Science Publishers, Lengerich. 2011. Available from: ISBN 978-3-389967-737-9.Google Scholar
  22. 22.
    Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol. 2016.; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27343013
  23. 23.
    Barbalat R, Lau L, Locksley RM, Barton GM. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol. 2009;10:1200–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19801985 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Michaud F, Coulombe F, Gaudreault E, Kriz J, Gosselin J. Involvement of TLR2 in recognition of acute gammaherpesvirus-68 infection. PLoS One. 2010;5:e13742. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21060793 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20303872 PubMedCrossRefGoogle Scholar
  26. 26.
    Pelka K, Shibata T, Miyake K, Latz E. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol Rev. 2016;269:60–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26683145 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med. 2012;18:1286–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22772463 PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee K-G, Xu S, Kang Z-H, Huo J, Huang M, Liu D, et al. Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A. 2012;109:5791–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22454496 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Shibata T, Ohto U, Nomura S, Kibata K, Motoi Y, Zhang Y, et al. Guanosine and its modified derivatives are endogenous ligands for TLR7. Int Immunol. 2016;28:211–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26489884 PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Krüger A, Oldenburg M, Chebrolu C, Beisser D, Kolter J, Sigmund AM, et al. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep. 2015;16:1656–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26545385 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Celhar T, Magalhães R, Fairhurst A-M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol Res. 2012;53:58–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22434514 PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 2013;13:551–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23846113 PubMedCrossRefGoogle Scholar
  33. 33.
    Bliksøen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, et al. Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111:42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27164906 PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hsiao H-B, Chou A-H, Lin S-I, Chen I-H, Lien S-P, Liu C-C, et al. Toll-like receptor 9-mediated protection of enterovirus 71 infection in mice is due to the release of danger-associated molecular patterns. J Virol. 2014;88:11658–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25078697 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bao W, Xia H, Liang Y, Ye Y, Lu Y, Xu X, et al. Toll-like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis. Sci Rep. 2016;6:22579. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26934958 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wagner H. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin Immunol. 2008;20:396–400. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18656540 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gürtler C, Bowie AG. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013;21:413–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23726320 PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    van der Meer AJ, Achouiti A, van der Ende A, Soussan AA, Florquin S, de Vos A, et al. Toll-like receptor 9 enhances bacterial clearance and limits lung consolidation in murine pneumonia caused by methicillin resistant Staphylococcus aureus. Mol Med. 2016;22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27508882
  39. 39.
    Lamphier MS, Sirois CM, Verma A, Golenbock DT, Latz E. TLR9 and the recognition of self and non-self nucleic acids. Ann N Y Acad Sci. 2006;1082:31–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17145922 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liu Q, Ding JL. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol. 2016;94:538–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26860369 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Latz E, Visintin A, Lien E, Fitzgerald KA, Espevik T, Golenbock DT. The LPS receptor generates inflammatory signals from the cell surface. J Endotoxin Res. 2003;9:375–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14733724 PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Husebye H, Halaas Ø, Stenmark H, Tunheim G, Sandanger Ø, Bogen B, et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J. 2006;25:683–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16467847 PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33:449–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22721918 PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898–908. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25526305 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Claes A-K, Zhou JY, Philpott DJ. NOD-like receptors: guardians of intestinal mucosal barriers. Physiology (Bethesda). 2015;30:241–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25933824 Google Scholar
  46. 46.
    Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95:149–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25540141 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J. 2016;57:5–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26632377 PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang X, Yi F. The nucleotide oligomerization domain-like receptors in kidney injury. Kidney Dis (Basel). 2016;2:28–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27536689 CrossRefGoogle Scholar
  49. 49.
    Koonin EV, Aravind L. The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci. 2000;25:223–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10782090 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ting JP-Y, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18341998 PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Man SM, Kanneganti T-D. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879280 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219188 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Guarda G, Zenger M, Yazdi AS, Schroder K, Ferrero I, Menu P, et al. Differential expression of NLRP3 among hematopoietic cells. J Immunol. 2011;186:2529–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21257968 PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26549800 PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10:241–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19221555 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chavarría-Smith J, Vance RE. The NLRP1 inflammasomes. Immunol Rev. 2015;265:22–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879281 PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Shi F, Yang Y, Kouadir M, Xu W, Hu S, Wang T. Inflammasome-independent role of NLRP12 in suppressing colonic inflammation regulated by Blimp-1. Oncotarget. 2016.; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27105524
  58. 58.
    Vance RE. The NAIP/NLRC4 inflammasomes. Curr Opin Immunol. 2015;32:84–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25621709 PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Allen IC. Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol. 2014;5:169. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24795716 PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Damm A, Lautz K, Kufer TA. Roles of NLRP10 in innate and adaptive immunity. Microbes Infect. 2013;15:516–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23562614 PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Devaiah BN, Singer DS. CIITA and its dual roles in MHC gene transcription. Front Immunol. 2013;4:476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24391648 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616437 PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Barik S. What really rigs up RIG-I? J Innate Immun. 2016;8(5):429–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27438016 PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ranoa DRE, Parekh AD, Pitroda SP, Huang X, Darga T, Wong AC, et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget. 2016;7:26496–515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27034163 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016;16:566–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27455396 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim Y-G, Chakrabarti A, et al. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol. 2014;193:4214–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25225670 PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19158675 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Xiao TS. The nucleic acid-sensing inflammasomes. Immunol Rev. 2015;265:103–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879287 PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Jakobs C, Perner S, Hornung V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One. 2015;10:e0131702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26114879 PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Dubois H, Wullaert A, Lamkanfi M. General strategies in inflammasome biology. Curr Top Microbiol Immunol. 2016;397:1–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27460802 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36:561–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22483801 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49:567–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22137500 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Dempsey A, Bowie AG. Innate immune recognition of DNA: a recent history. Virology. 2015;479–480:146–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25816762 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Diner BA, Lum KK, Cristea IM. The emerging role of nuclear viral DNA sensors. J Biol Chem. 2015;290:26412–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26354430 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity. 2016;45:255–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27496731 PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23722159 PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cai X, Chiu Y-H, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54:289–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24766893 PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gao D, Li T, Li X-D, Chen X, Li Q-Z, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci U S A. 2015;112:E5699–705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26371324 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ma Z, Damania B. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe. 2016;19:150–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26867174 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ablasser A, Gulen MF. The role of cGAS in innate immunity and beyond. J Mol Med. 2016;94:1085–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27154323 PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503:530–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24077100 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kuriakose T, Man SM, Subbarao Malireddi RK, Karki R, Kesavardhana S, Place DE, et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. 2016;(1):aag2045. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27917412 PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276510007471 PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910633 PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol. 2016;51:195–212. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27098756 PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Blackford AN. Personal communication.Google Scholar
  87. 87.
    Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5:a012716. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24003211 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16336259 PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Osorio F, Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34:651–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616435 PubMedCrossRefGoogle Scholar
  90. 90.
    Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol. 2012;30:491–529. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22224766 PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Mason CP, Tarr AW. Human lectins and their roles in viral infections. Molecules. 2015;20:2229–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25642836 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25553393 PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Drickamer K, Taylor ME. Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol. 2015;34:26–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26163333 PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Geijtenbeek TBH, Gringhuis SI. C-type lectin receptors in the control of T helper cell differentiation. Nat Rev Immunol. 2016;16:433–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27291962 PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Monteiro J, Lepenies B. Myeloid C-type lectin receptors in viral recognition and antiviral immunity. Virus. 2017;9:59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28327518 CrossRefGoogle Scholar
  96. 96.
    Sancho D, Reis e Sousa C. Sensing of cell death by myeloid C-type lectin receptors. Curr Opin Immunol. 2013;25:46–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23332826 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Iborra S, Sancho D. Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors. Immunobiology. 2015;220:175–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25269828 PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Thiagarajan PS, Yakubenko VP, Elsori DH, Yadav SP, Willard B, Tan CD, et al. Vimentin is an endogenous ligand for the pattern recognition receptor Dectin-1. Cardiovasc Res. 2013;99:494–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23674515 PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kiyotake R, Oh-hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human Mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem. 2015;290:25322–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26296894 PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Neumann K, Castiñeiras-Vilariño M, Höckendorf U, Hannesschläger N, Lemeer S, Kupka D, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014;40:389–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24631154 PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martínez D, Hernanz-Falcón P, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458:899–903. Available from: http://www.nature.com/doifinder/10.1038/nature07750 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100:575–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10721994 CrossRefGoogle Scholar
  103. 103.
    Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol. 2014;33:54–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24156700 PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kamalakannan M, Chang LM, Grishina G, Sampson HA, Masilamani M. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. Allergy. 2016;71:1145–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26948687 PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Clark GF, Grassi P, Pang P-C, Panico M, Lafrenz D, Drobnis EZ, et al. Tumor biomarker glycoproteins in the seminal plasma of healthy human males are endogenous ligands for DC-SIGN. Mol Cell Proteomics. 2012;11:M111.008730. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21986992 PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol. 2000;151:673–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11062267.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K, et al. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol. 2006;18:857–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16581822 PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    D’Apice L, Costa V, Sartorius R, Trovato M, Aprile M, De Berardinis P. Stimulation of innate and adaptive immunity by using filamentous bacteriophage fd targeted to DEC-205. J Immunol Res. 2015;2015:1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26380324 CrossRefGoogle Scholar
  109. 109.
    Crocker PR, Mucklow S, Bouckson V, McWilliam A, Willis AC, Gordon S, et al. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 1994;13:4490–503. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7925291 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem. 1993;268:7011–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8463234 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66. Available from: http://www.nature.com/doifinder/10.1038/nri2056 PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Attrill H, Imamura A, Sharma RS, Kiso M, Crocker PR, van Aalten DMF. Siglec-7 undergoes a major conformational change when complexed with the alpha(2,8)-disialylganglioside GT1b. J Biol Chem. 2006;281:32774–83. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M601714200 PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Brown GD, Crocker PR. Lectin receptors expressed on myeloid cells. Microbiol Spectr. 2016;4:PMID:27780012. Available from: http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0036-2016 Google Scholar
  114. 114.
    Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”. Nature. 2011;472:471–5. Available from: http://www.nature.com/doifinder/10.1038/nature10071 PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94:55–68. Available from: http://www.jleukbio.org/cgi/doi/10.1189/jlb.1012519 PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem. 2017;60:7213–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28482155 PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23772226 PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Land WG. The role of damage-associated molecular patterns in human diseases: part I – promoting inflammation and immunity. Sultan Qaboos Univ Med J. 2015;15:e9–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25685392 PubMedPubMedCentralGoogle Scholar
  119. 119.
    Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208–14. Available from: http://www.nature.com/doifinder/10.1038/nri.2016.151 CrossRefGoogle Scholar
  120. 120.
    Carrara M, Prischi F, Nowak PR, Ali MM. Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling. EMBO J. 2015;34:1589–600. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25925385 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent insights into the role of unfolded protein response in ER stress in health and disease. Front Cell Dev Biol. 2017;5:48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28540288 PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Rivers-Auty J, Brough D. Potassium efflux fires the canon: potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur J Immunol. 2015;45:2758–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26332156 PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Próchnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Research. 2016;5:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27508077 CrossRefGoogle Scholar
  124. 124.
    Patel MN, Carroll RG, Galván-Peña S, Mills EL, Olden R, Triantafilou M, et al. Inflammasome priming in sterile inflammatory disease. Trends Mol Med. 2017;23:165–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28109721 PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One. 2014;e98896:9. Available from: http://dx.plos.org/10.1371/journal.pone.0098896 Google Scholar
  126. 126.
    Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, et al. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol. 2015;36:MCB.00868-15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26527616 CrossRefGoogle Scholar
  127. 127.
    Sihvola V, Levonen A-L. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys. 2017;617:94–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27769838 PubMedCrossRefGoogle Scholar
  128. 128.
    Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys. 2017;617:84–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27497696 PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem. 2006;281:24756–68. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M601119200 PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006;26:2887–900. Available from: http://mcb.asm.org/cgi/doi/10.1128/MCB.26.8.2887-2900.2006 PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014;192:1997–2006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24563502 PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cell. 2015;4:178–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26010753 CrossRefGoogle Scholar
  133. 133.
    Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14:303–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11290339 PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88:887–918. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18626063 PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Cappelletti M, Presicce P, Calcaterra F, Mavilio D, Della Bella S. Bright expression of CD91 identifies highly activated human dendritic cells that can be expanded by defensins. Immunology. 2015;144:661–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25351513 PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Salimu J, Spary LK, Al-Taei S, Clayton A, Mason MD, Staffurth J, et al. Cross-presentation of the oncofetal tumor antigen 5T4 from irradiated prostate cancer cells—a key role for heat-shock protein 70 and receptor CD91. Cancer Immunol Res. 2015;3:678–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25678582 PubMedCrossRefGoogle Scholar
  137. 137.
    Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol Mech Dis. 2012;7:61–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910624 CrossRefGoogle Scholar
  138. 138.
    Voss OH, Tian L, Murakami Y, Coligan JE, Krzewski K. Emerging role of CD300 receptors in regulating myeloid cell efferocytosis. Mol Cell Oncol. 2015;2:e964625. Available from: http://www.tandfonline.com/doi/full/10.4161/23723548.2014.964625 PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev. 2016;269:44–59. Available from: http://doi.wiley.com/10.1111/imr.12376 PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013;13:621–34. Available from: http://www.nature.com/doifinder/10.1038/nri3515 PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509:310–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24828189 PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Di Virgilio F, Vuerich M. Purinergic signaling in the immune system. Auton Neurosci. 2015;191:117–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25979766 PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150427. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27377721 PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Wan H-X, Hu J-H, Xie R, Yang S-M, Dong H. Important roles of P2Y receptors in the inflammation and cancer of digestive system. Oncotarget. 2016;7:28736–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26908460 PubMedPubMedCentralGoogle Scholar
  145. 145.
    Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9755289 Google Scholar
  146. 146.
    Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev. 2006;58:58–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16507883 PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Burnstock G. Purinergic signalling: pathophysiology and therapeutic potential. Keio J Med. 2013;62:63–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24067872 PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev. 2014;66:102–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24335194 PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ralevic V, Dunn WR. Purinergic transmission in blood vessels. Auton Neurosci. 2015;191:48–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26004513 PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2017;36(3):293–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27321181 PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58:281–341. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16968944 PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19741708 PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Fredriksson R, Schiöth HB. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol. 2005;67:1414–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15687224 PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Pavlos NJ, Friedman PA. GPCR signaling and trafficking: the long and short of it. Trends Endocrinol. Metab. 2017;28(3):213–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27889227 PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev. 2013;65:967–86. Available from: http://pharmrev.aspetjournals.org/cgi/doi/10.1124/pr.112.007179 PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a006049 PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Alexander SP, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE, et al. The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol. 2015;172:5744–869. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26650439 PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Zhang L, Bell BA, Yu M, Chan C-C, Peachey NS, Fung J, et al. Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis. J Leukoc Biol. 2016;99:447–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26394814 PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    He H-Q, Ye R. The formyl peptide receptors: diversity of ligands and mechanism for recognition. Molecules. 2017;22:455. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28335409 CrossRefGoogle Scholar
  160. 160.
    Gilissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther. 2016;159:56–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26808164 PubMedCrossRefGoogle Scholar
  161. 161.
    Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal J-S, Cho J-H, et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008;14:1067–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18836459 PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    He W, Miao FJ-P, Lin DC-H, Schwandner RT, Wang Z, Gao J, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429:188–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15141213 PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Ariza AC, Deen PMT, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;3:22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22649411 CrossRefGoogle Scholar
  164. 164.
    de Castro FM, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal. 2016;14:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26759054 CrossRefGoogle Scholar
  165. 165.
    Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9:1261–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18820681 PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135:561–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18984166 PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Lee HY, Lee M, Bae Y-S. Formyl peptide receptors in cellular differentiation and inflammatory diseases. J Cell Biochem. 2017;118:1300–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28075050 PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Burton AR, Fazalbhoy A, Macefield VG. Sympathetic responses to noxious stimulation of muscle and skin. Front Neurol. 2016;7:109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27445972 PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Yalcin I, Megat S, Barthas F, Waltisperger E, Kremer M, Salvat E, et al. The sciatic nerve cuffing model of neuropathic pain in mice. J Vis Exp. 2014;89:25078668. Available from: http://www.jove.com/video/51608/the-sciatic-nerve-cuffing-model-of-neuropathic-pain-in-mice Google Scholar
  170. 170.
    Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005;6:507–20. Available from: http://www.nature.com/doifinder/10.1038/nrn1701 PubMedCrossRefGoogle Scholar
  171. 171.
    Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120:3760–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041958 PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci. 2015;131:251–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25744676 PubMedCrossRefGoogle Scholar
  173. 173.
    Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem. 2016;141(4):507–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27363363 CrossRefGoogle Scholar
  174. 174.
    Geppetti P, Veldhuis NA, Lieu T, Bunnett NW. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron. 2015;88:635–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26590341 PubMedCrossRefGoogle Scholar
  175. 175.
    Dai Y. TRPs and pain. Semin Immunopathol. 2016;38:277–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26374740 PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25744671 PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol. 2016;173:953–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26603538 PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol. 2016;594:4151–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27079970 PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Nilius B, Appendino G, Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflügers Arch Eur J Physiol. 2012;464:425–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23001121 CrossRefGoogle Scholar
  180. 180.
    Zygmunt PM, Högestätt ED. TRPA1. Handb Exp Pharmacol. 2014;222:583–630. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24756722 PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Frias B, Merighi A. Capsaicin, nociception and pain. Molecules. 2016;21:797. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27322240 CrossRefGoogle Scholar
  182. 182.
    Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest. 2010;120:1617–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20424317 PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res. 2014;53:93–107. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24287369 PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 2013;31:227–58. Available from: http://www.annualreviews.org/doi/10.1146/annurev-immunol-020711-075005 PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21212348 PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298206 PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3:575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26041808 PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Augusto DG. The impact of KIR polymorphism on the risk of developing cancer: not as strong as imagined? Front Genet. 2016;7:121. Available from: http://journal.frontiersin.org/Article/10.3389/fgene.2016.00121/abstract PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15771571 PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Béziat V, Hilton HG, Norman PJ, Traherne JA. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology. 2017;150:248–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27779741 PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Chen Y, Shi Y, Cheng H, An Y-Q, Gao GF. Structural immunology and crystallography help immunologists see the immune system in action: how T and NK cells touch their ligands. IUBMB Life. 2009;61:579–90. Available from: http://doi.wiley.com/10.1002/iub.208 PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Varbanova V, Naumova E, Mihaylova A. Killer-cell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol Immunother. 2016;65:427–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26874942 PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Carrillo-Bustamante P, Keşmir C, de Boer RJ. The evolution of natural killer cell receptors. Immunogenetics. 2016;68:3–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26392015 PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996;4:573–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8673704 PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Bellora F, Castriconi R, Dondero A, Carrega P, Mantovani A, Ferlazzo G, et al. Human NK cells and NK receptors. Immunol Lett. 2014;161:168–73. Available from: http://linkinghub.elsevier.com/retrieve/pii/S016524781300223X PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Xiong P, Sang H-W, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology. 2015;146:369–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26235210 PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Martinet L, Ferrari De Andrade L, Guillerey C, Lee JS, Liu J, Souza-Fonseca-Guimaraes F, et al. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep. 2015;11:85–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124715002594 PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. 2003;198:557–67. Available from: http://www.jem.org/lookup/doi/10.1084/jem.20030788 PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Baychelier F, Vieillard V. The modulation of the cell-cycle: a sentinel to alert the NK cells of dangers. Front Immunol. 2013;4:325. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24109484 PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Deuss FA, Gully BS, Rossjohn J, Berry R. Recognition of nectin-2 by the natural killer cell receptor TIGIT. J Biol Chem. 2017;292(27):11413–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28515320 PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Glienke J, Sobanov Y, Brostjan C, Steffens C, Nguyen C, Lehrach H, et al. The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics. 1998;48:163–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9683661 PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Ho EL, Heusel JW, Brown MG, Matsumoto K, Scalzo AA, Yokoyama WM. Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci U S A. 1998;95:6320–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9600963 PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. Trends Immunol. 2005;26:221–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15797513 PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    O’Connor GM, Hart OM, Gardiner CM. Putting the natural killer cell in its place. Immunology. 2006;117:1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16423035 PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol. 2012;188:2509–15. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1102461 PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Cagnano E, Hershkovitz O, Zilka A, Bar-Ilan A, Golder A, Sion-Vardy N, et al. Expression of ligands to NKp46 in benign and malignant melanocytes. J Invest Dermatol. 2008;128:972–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022202X15338161 PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Koch J, Steinle A, Watzl C, Mandelboim O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34:182–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23414611 PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Horton NC, Mathew PA. NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors. Front Immunol. 2015;6:31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25699048 PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Daëron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9143687 PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Kraft S, Kinet J-P. New developments in FcεRI regulation, function and inhibition. Nat Rev Immunol. 2007;7:365–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17438574 CrossRefGoogle Scholar
  211. 211.
    Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8:205–17. Available from: http://www.nature.com/doifinder/10.1038/nri2273 PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Platzer B, Stout M, Fiebiger E. Functions of dendritic-cell-bound IgE in allergy. Mol Immunol. 2015;68:116–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26052071 PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Hayes J, Wormald M, Rudd P, Davey G. Fc gamma receptors: glycobiology and therapeutic prospects. J Inflamm Res. 2016;9:209–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27895507 PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15:707–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25045879 PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol. 2017;29(7):303–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28472280 PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Lobo PI. Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease. Front Immunol. 2016;7:198. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27375614 PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol. 2010;28:157–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19968561 PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Jaillon S, Ponzetta A, Magrini E, Barajon I, Barbagallo M, Garlanda C, et al. Fluid phase recognition molecules in neutrophil-dependent immune responses. Semin Immunol. 2016;28:109–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27021644 PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343:227–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20838815 CrossRefGoogle Scholar
  220. 220.
    Litvack ML, Palaniyar N. Review: soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun. 2010;16:191–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20529971 PubMedCrossRefGoogle Scholar
  221. 221.
    Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol. 2003;170:4564–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12707334 PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Zhang M, Alicot EM, Carroll MC. Human natural IgM can induce ischemia/reperfusion injury in a murine intestinal model. Mol Immunol. 2008;45:4036–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18672288 PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Daha NA, Banda NK, Roos A, Beurskens FJ, Bakker JM, Daha MR, et al. Complement activation by (auto-) antibodies. Mol Immunol. 2011;48:1656–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21757235 PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Beurskens FJ, van Schaarenburg RA, Trouw LA. C1q, antibodies and anti-C1q autoantibodies. Mol Immunol. 2015;68:6–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26032012 PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev. 2011;63:965–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21704094 PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Litvack ML, Post M, Palaniyar N. IgM promotes the clearance of small particles and apoptotic microparticles by macrophages. PLoS One. 2011;6:e17223. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21448268 PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Moreau C, Bally I, Chouquet A, Bottazzi B, Ghebrehiwet B, Gaboriaud C, et al. Structural and functional characterization of a single-chain form of the recognition domain of complement protein C1q. Front Immunol. 2016;7:79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26973654 PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Gupta G, Surolia A. Collectins: sentinels of innate immunity. Bioessays. 2007;29:452–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17450595 PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Hansen SWK, Ohtani K, Roy N, Wakamiya N. The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology. 2016;221:1058–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27377710 PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res. 2016;17:66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27250970 PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Scorza M, Liguori R, Elce A, Salvatore F, Castaldo G. Biological role of mannose binding lectin: from newborns to centenarians. Clin Chim Acta. 2015;451:78–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25783214 PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Stuart LM, Henson PM, Vandivier RW. Collectins: opsonins for apoptotic cells and regulators of inflammation. Curr Dir Autoimmun. 2006;9:143–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16394659 PubMedPubMedCentralGoogle Scholar
  233. 233.
    Nakamura N, Nonaka M, Ma BY, Matsumoto S, Kawasaki N, Asano S, et al. Characterization of the interaction between serum mannan-binding protein and nucleic acid ligands. J Leukoc Biol. 2009;86:737–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19465640 PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz). 2013;61:273–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23563865 CrossRefGoogle Scholar
  235. 235.
    Ren Y, Ding Q, Zhang X. Ficolins and infectious diseases. Virol Sin. 2014;29:25–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24452543 PubMedCrossRefGoogle Scholar
  236. 236.
    Garred P, Honoré C, Ma YJ, Rørvig S, Cowland J, Borregaard N, et al. The genetics of ficolins. J Innate Immun. 2010;2:3–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20375618 PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Endo Y, Matsushita M, Fujita T. Role of ficolin in innate immunity and its molecular basis. Immunobiology. 2007;212:371–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17544822 CrossRefGoogle Scholar
  238. 238.
    Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. Int Rev Cell Mol Biol. 2015;316:49–110. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25805122 PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Ma YJ, Doni A, Romani L, Jürgensen HJ, Behrendt N, Mantovani A, et al. Ficolin-1-PTX3 complex formation promotes clearance of altered self-cells and modulates IL-8 production. J Immunol. 2013;191:1324–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23817411 PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Breviario F, D’Aniello EM, Golay J, Peri G, Bottazzi B, Bairoch A, et al. Interleukin-1-inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component. J Biol Chem. 1992;267:22190–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1429570 PubMedPubMedCentralGoogle Scholar
  241. 241.
    Lee GW, Lee TH, Vilcek J. TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins. J Immunol. 1993;150:1804–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7679696 PubMedPubMedCentralGoogle Scholar
  242. 242.
    Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol. 2005;23:337–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15771574 PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature. 2008;456:989–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19011614 PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Balhara J, Koussih L, Zhang J, Gounni AS. Pentraxin 3: an immuno-regulator in the lungs. Front Immunol. 2013;4:127. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23755050 PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Shimizu T, Suzuki S, Sato A, Nakamura Y, Ikeda K, Saitoh S, et al. Cardio-protective effects of pentraxin 3 produced from bone marrow-derived cells against ischemia/reperfusion injury. J Mol Cell Cardiol. 2015;89:306–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26470821 PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Degn SE, Thiel S. Humoral pattern recognition and the complement system. Scand J Immunol. 2013;78:181–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23672641 PubMedCrossRefGoogle Scholar
  247. 247.
    Doni A, D’Amico G, Morone D, Mantovani A, Garlanda C. Humoral innate immunity at the crossroad between microbe and matrix recognition: the role of PTX3 in tissue damage. Semin Cell Dev Biol. 2017;61:31–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27476448 PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Endo Y, Nakazawa N, Iwaki D, Takahashi M, Matsushita M, Fujita T. Interactions of ficolin and mannose-binding lectin with fibrinogen/fibrin augment the lectin complement pathway. J Innate Immun. 2010;2:33–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20375621 PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Groeneveld TWL, Oroszlán M, Owens RT, Faber-Krol MC, Bakker AC, Arlaud GJ, et al. Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J Immunol. 2005;175:4715–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16177119 PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Tseng J, Mortensen RF. The effect of human C-reactive protein on the cell-attachment activity of fibronectin and laminin. Exp Cell Res. 1989;180:303–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2521604 PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Heil M, Land WG. Danger signals – damaged-self recognition across the tree of life. Front Plant Sci. 2014;5:578. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25400647 PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Heil M, Land WG, Tör M. Editorial: wound recognition across the tree of life. Front Plant Sci. 2016;7:1319. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27635126 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations