Advertisement

Humoral Innate Immune Effector Responses

  • Walter Gottlieb Land
Chapter

Abstract

In this chapter, components from the humoral arm of the innate immune system are addressed which—in terms of a crosstalk—must remain in a delicate balance to cellular components to ensure efficient detection and response to both infectious and sterile cell stress/tissue injury. Emphasis is put on the description of the prototypical complement system that operates together with its co-players, collectins, ficolins, and pentraxins. The activation of the complement system via the three convergent pathways, the classical pathway, the lectin pathway, and the alternative pathway, is described by focusing on the molecular and structural basis of activation and regulation of these three complement pathways. Some typical mechanisms involved in the three cascades are reviewed by especially alluding to the formation of C3 and C5 convertases, the action of anaphylatoxins, the membrane attack complex, the role of complement receptors, and a crosstalk between complement and other cellular pattern recognition molecules. A particular subchapter is devoted to pentraxins which, as “antibody-like molecules,” may be regarded as ancestors of antibodies determined to have a rather regulatory function on inflammation. A final subchapter deals with antimicrobial peptides such as defensins, cathelicidins, and histatins. As products of activated cells of the innate immune system, they participate in the first line of host defense against pathogenic infections and can also be regarded as key components of the ancient innate immune system. There is increasing interest in these substances, in terms of “nature’s antibiotics” because they show promise in overcoming the growing problem of antibiotic resistance.

References

  1. 1.
    Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97. Available from: http://www.nature.com/doifinder/10.1038/ni.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ghebrehiwet B, Hosszu KK, Valentino A, Peerschke EIB. The C1q family of proteins: insights into the emerging non-traditional functions. Front Immunol. 2012;3 Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2012.00052/abstract
  3. 3.
    Degn SE, Thiel S. Humoral pattern recognition and the complement system. Scand J Immunol. 2013;78:181–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23672641 CrossRefPubMedGoogle Scholar
  4. 4.
    Kolev M, Le Friec G, Kemper C. Complement—tapping into new sites and effector systems. Nat Rev Immunol. 2014;14:811–20. Available from: http://www.nature.com/doifinder/10.1038/nri3761 CrossRefPubMedGoogle Scholar
  5. 5.
    Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system Part I - Molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26082779 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system Part II: Role in immunity. Front Immunol. 2015;6:257. Available from: http://www.frontiersin.org/Molecular_Innate_Immunity/10.3389/fimmu.2015.00257/abstract PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 2015;34:2735–57. Available from: http://emboj.embopress.org/cgi/doi/10.15252/embj.201591881 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol. 2017;72:124–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28647534 CrossRefPubMedGoogle Scholar
  9. 9.
    Killick J, Morisse G, Sieger D, Astier AL. Complement as a regulator of adaptive immunity. Semin Immunopathol. 2017;40(1):37–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28842749 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016;273:357–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27558346 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Han CZ, Ravichandran KS. Metabolic connections during apoptotic cell engulfment. Cell. 2011;147:1442–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867411015054 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta Mol basis Dis. 1812;2011:982–94. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925443910002930 Google Scholar
  13. 13.
    Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-Mozaini M, et al. Emerging and novel functions of complement protein C1q. Front Immunol. 2015;6:317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26175731 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016;274:74–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782323 CrossRefPubMedGoogle Scholar
  15. 15.
    Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343:227–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20838815 CrossRefPubMedGoogle Scholar
  16. 16.
    Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: a fresh look upon an old molecule. Mol Immunol. 2017;89:73–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28601358 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Martin M, Leffler J, Blom AM. Annexin A2 and A5 serve as new ligands for C1q on apoptotic cells. J Biol Chem. 2012;287:33733–44. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M112.341339 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cai Y, Teo BHD, Yeo JG, Lu J. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins. J Biol Chem. 2015;290:22570–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26231209 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martin M, Blom AM. Complement in removal of the dead - balancing inflammation. Immunol Rev. 2016;274:218–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782329 CrossRefPubMedGoogle Scholar
  20. 20.
    Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp. 2013;61:273–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23563865 CrossRefGoogle Scholar
  21. 21.
    Kjaer TR, Le LTM, Pedersen JS, Sander B, Golas MM, Jensenius JC, et al. Structural insights into the initiating complex of the lectin pathway of complement activation. Structure. 2015;23:342–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25579818 CrossRefPubMedGoogle Scholar
  22. 22.
    Dobó J, Pál G, Cervenak L, Gál P. The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond. Immunol Rev. 2016;274:98–111. Available from: http://doi.wiley.com/10.1111/imr.12460 CrossRefPubMedGoogle Scholar
  23. 23.
    Hansen SWK, Ohtani K, Roy N, Wakamiya N. The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology. 2016;221:1058–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27377710 CrossRefPubMedGoogle Scholar
  24. 24.
    Nakamura N, Nonaka M, Ma BY, Matsumoto S, Kawasaki N, Asano S, et al. Characterization of the interaction between serum mannan-binding protein and nucleic acid ligands. J Leukoc Biol. 2009;86:737–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19465640 CrossRefPubMedGoogle Scholar
  25. 25.
    Pilely K, Rosbjerg A, Genster N, Gal P, Pál G, Halvorsen B, et al. Cholesterol crystals activate the lectin complement pathway via ficolin-2 and mannose-binding lectin: implications for the progression of atherosclerosis. J Immunol. 2016;196:5064–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27183610 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, et al. Identification of the target self-antigens in reperfusion injury. J Exp Med. 2006;203:141–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16390934 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest. 2016;126:1911–25. Available from: https://www.jci.org/articles/view/83000 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ohtani K, Suzuki Y, Eda S, Kawai T, Kase T, Keshi H, et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J Biol Chem. 2001;276:44222–8. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M103942200 CrossRefPubMedGoogle Scholar
  29. 29.
    Gout E, Garlatti V, Smith DF, Lacroix M, Dumestre-Pérard C, Lunardi T, et al. Carbohydrate recognition properties of human ficolins: glycan array screening reveals the sialic acid binding specificity of M-ficolin. J Biol Chem. 2010;285:6612–22. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M109.065854 CrossRefPubMedGoogle Scholar
  30. 30.
    Jensen ML, Honoré C, Hummelshøj T, Hansen BE, Madsen HO, Garred P. Ficolin-2 recognizes DNA and participates in the clearance of dying host cells. Mol Immunol. 2007;44:856–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589006001507 CrossRefPubMedGoogle Scholar
  31. 31.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014;343:1260–3. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1248943 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kishore U, Reid KB. C1q: structure, function, and receptors. Immunopharmacology. 2000;49:159–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10904115 CrossRefPubMedGoogle Scholar
  33. 33.
    Ghai R, Waters P, Roumenina LT, Gadjeva M, Kojouharova MS, Reid KBM, et al. C1q and its growing family. Immunobiology. 2007;212:253–66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0171298506001355 CrossRefPubMedGoogle Scholar
  34. 34.
    Yongqing T, Drentin N, Duncan RC, Wijeyewickrema LC, Pike RN. Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: two genes, five proteins and many functions? Biochim Biophys Acta. 2012;1824:253–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1570963911001634 CrossRefPubMedGoogle Scholar
  35. 35.
    Mortensen S, Kidmose RT, Petersen SV, Szilágyi Á, Prohászka Z, Andersen GR. Structural basis for the function of complement component C4 within the classical and lectin pathways of complement. J Immunol. 2015;194:5488–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25911760 CrossRefPubMedGoogle Scholar
  36. 36.
    Mortensen S, Jensen JK, Andersen GR. Solution structures of complement C2 and its C4 complexes propose pathway-specific mechanisms for control and activation of the complement proconvertases. J Biol Chem. 2016;291:16494–507. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27252379 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gros P, Milder FJ, Janssen BJC. Complement driven by conformational changes. Nat Rev Immunol. 2008;8:48–58. Available from: http://www.nature.com/doifinder/10.1038/nri2231 CrossRefPubMedGoogle Scholar
  38. 38.
    Davis AE, Cai S, Liu D. The biological role of the C1 inhibitor in regulation of vascular permeability and modulation of inflammation. Adv Immunol. 2004;82:331–63. Available from: http://linkinghub.elsevier.com/retrieve/pii/S006527760482008X CrossRefPubMedGoogle Scholar
  39. 39.
    Ramadass M, Ghebrehiwet B, Kew RR. Enhanced recognition of plasma proteins in a non-native state by complement C3b. A possible clearance mechanism for damaged proteins in blood. Mol Immunol. 2015;64:55–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25466612 CrossRefPubMedGoogle Scholar
  40. 40.
    Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev. 2016;274:172–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782331 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev. 2016;274:152–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782321 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Blaum BS. The lectin self of complement factor H. Curr Opin Struct Biol. 2017;44:111–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28189794 CrossRefPubMedGoogle Scholar
  43. 43.
    Cortes C, Ohtola JA, Saggu G, Ferreira VP. Local release of properdin in the cellular microenvironment: role in pattern recognition and amplification of the alternative pathway of complement. Front Immunol. 2012;3:412. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2012.00412/abstract PubMedGoogle Scholar
  44. 44.
    Ferreira VP, Cortes C, Pangburn MK. Native polymeric forms of properdin selectively bind to targets and promote activation of the alternative pathway of complement. Immunobiology. 2010;215:932–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20382442 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kemper C, Mitchell LM, Zhang L, Hourcade DE. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci U S A. 2008;105:9023–8. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.0801015105 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Camous L, Roumenina L, Bigot S, Brachemi S, Frémeaux-Bacchi V, Lesavre P, et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood. 2011;117:1340–9. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2010-05-283564 CrossRefPubMedGoogle Scholar
  47. 47.
    Roumenina L. Personal Communication.Google Scholar
  48. 48.
    Wang H, Wang C, Zhao M-H, Chen M. Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol. 2015;181:518–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25963026 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    RP ME. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107:331–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25994174 CrossRefGoogle Scholar
  50. 50.
    Wegiel B, Hauser CJ, Otterbein LE. Heme as a danger molecule in pathogen recognition. Free Radic Biol Med. 2015;89:651–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26456060 CrossRefPubMedGoogle Scholar
  51. 51.
    Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res. 2016;65:665–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27251171 CrossRefPubMedGoogle Scholar
  52. 52.
    Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O’Brian MR, et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol Mol Biol Rev. 2017;81:e00048–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28123057 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Frimat M, Tabarin F, Dimitrov JD, Poitou C, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood. 2013;122:282–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23692858 CrossRefPubMedGoogle Scholar
  54. 54.
    Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–90. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2013-04-495887 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ferreira VP, Pangburn MK, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol. 2010;47:2187–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589010001665 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bubeck D. The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry. 2014;53:1908–15. Available from: http://pubs.acs.org/doi/abs/10.1021/bi500157z CrossRefPubMedGoogle Scholar
  57. 57.
    Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiology. 2016;221:747–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25956457 CrossRefPubMedGoogle Scholar
  58. 58.
    Serna M, Giles JL, Morgan BP, Bubeck D. Structural basis of complement membrane attack complex formation. Nat Commun. 2016;7:10587. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26841837 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Triantafilou M, Hughes TR, Morgan BP, Triantafilou K. Complementing the inflammasome. Immunology. 2016;147:152–64. Available from: http://doi.wiley.com/10.1111/imm.12556 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nemerow GR, Yamamoto KI, Lint TF. Restriction of complement-mediated membrane damage by the eighth component of complement: a dual role for C8 in the complement attack sequence. J Immunol. 1979;123:1245–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/469249 PubMedGoogle Scholar
  61. 61.
    Schatz-Jakobsen JA, Yatime L, Larsen C, Petersen SV, Klos A, Andersen GR. Structural and functional characterization of human and murine C5a anaphylatoxins. Acta Crystallogr D Biol Crystallogr. 2014;70:1704–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24914981 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Verschoor A, Karsten CM, Broadley SP, Laumonnier Y, Köhl J. Old dogs-new tricks: immunoregulatory properties of C3 and C5 cleavage fragments. Immunol Rev. 2016;274:112–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782330 CrossRefPubMedGoogle Scholar
  63. 63.
    van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol. 2007;9:2095–102. Available from: http://doi.wiley.com/10.1111/j.1462-5822.2007.00981.x CrossRefPubMedGoogle Scholar
  64. 64.
    Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev. 2013;65:500–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23383423 CrossRefPubMedGoogle Scholar
  65. 65.
    Laumonnier Y, Karsten CM, Köhl J. Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol Immunol. 2017;89:44–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28600003 CrossRefPubMedGoogle Scholar
  66. 66.
    Mathern DR, Heeger PS. Molecules great and small: the complement system. Clin J Am Soc Nephrol. 2015;10:1636–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25568220 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Carroll MC, Isenman DE. Regulation of humoral immunity by complement. Immunity. 2012;37:199–207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22921118 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hannan JP. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci. 2016;17:463–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26916158 CrossRefPubMedGoogle Scholar
  69. 69.
    Springer TA, Dustin ML. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol. 2012;24:107–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0955067411001347 CrossRefPubMedGoogle Scholar
  70. 70.
    Sándor N, Lukácsi S, Ungai-Salánki R, Orgován N, Szabó B, Horváth R, et al. CD11c/CD18 dominates adhesion of human monocytes, macrophages and dendritic cells over CD11b/CD18. PLoS One. 2016;11:e0163120. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27658051 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Small A, Al-Baghdadi M, Quach A, Hii C, Ferrante A. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer. Swiss Med Wkly. 2016;146:w14301. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27045607 PubMedGoogle Scholar
  72. 72.
    Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC, Hamilton P, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017;28(9):2756–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28400446 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Keshavjee S, Davis RD, Zamora MR, de Perrot M, Patterson GA. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg. 2005;129:423–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15678055 CrossRefPubMedGoogle Scholar
  74. 74.
    Hajishengallis G, Lambris JD. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016;274:233–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782328 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated “bystander” damage initiates host NLRP3 inflammasome activation. J Cell Sci. 2016;129:1928–39. Available from: http://jcs.biologists.org/lookup/doi/10.1242/jcs.179291 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: is C3 a contact-activated protein? Immunobiology. 2012;217:1106–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22964236 CrossRefPubMedGoogle Scholar
  77. 77.
    Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol. 2007;179:2600–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17675523 CrossRefPubMedGoogle Scholar
  78. 78.
    Galvan MD, Greenlee-Wacker MC, Bohlson SS. C1q and phagocytosis: the perfect complement to a good meal. J Leukoc Biol. 2012;92:489–97. Available from: http://www.jleukbio.org/cgi/doi/10.1189/jlb.0212099 CrossRefPubMedGoogle Scholar
  79. 79.
    Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 2012;8:e1003046. Available from: http://dx.plos.org/10.1371/journal.ppat.1003046 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Baudino L, Sardini A, Ruseva MM, Fossati-Jimack L, Cook HT, Scott D, et al. C3 opsonization regulates endocytic handling of apoptotic cells resulting in enhanced T-cell responses to cargo-derived antigens. Proc Natl Acad Sci U S A. 2014;111:1503–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1316877111 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Clarke EV, Weist BM, Walsh CM, Tenner AJ. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation. J Leukoc Biol. 2015;97:147–60. Available from: http://www.jleukbio.org/cgi/doi/10.1189/jlb.3A0614-278R CrossRefPubMedGoogle Scholar
  82. 82.
    Zipfel PF. Complement factor H: physiology and pathophysiology. Semin Thromb Hemost. 2001;27:191–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11446652 CrossRefPubMedGoogle Scholar
  83. 83.
    Harboe M, Mollnes TE. The alternative complement pathway revisited. J Cell Mol Med. 2008;12:1074–84. Available from: http://doi.wiley.com/10.1111/j.1582-4934.2008.00350.x CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lachmann PJ. The amplification loop of the complement pathways. Adv Immunol. 2009;104:115–49. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065277608040042 CrossRefPubMedGoogle Scholar
  85. 85.
    Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28215731 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Foo S-S, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and collectins: friend or foe during pathogen invasion? Trends Microbiol. 2015;23:799–811. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26482345 CrossRefPubMedGoogle Scholar
  87. 87.
    Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res. 2016;17:66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27250970 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ujma S, Horsnell WGC, Katz AA, Clark HW, Schäfer G. Non-pulmonary immune functions of surfactant proteins A and D. J Innate Immun. 2017;9:3–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27794581 CrossRefPubMedGoogle Scholar
  89. 89.
    Ren Y, Ding Q, Zhang X. Ficolins and infectious diseases. Virol Sin. 2014;29:25–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24452543 CrossRefPubMedGoogle Scholar
  90. 90.
    Barnum SR. Complement: a primer for the coming therapeutic revolution. Pharmacol Ther. 2017;172:63–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27914981 CrossRefPubMedGoogle Scholar
  91. 91.
    Garlanda C, Bottazzi B, Bastone A, Mantovani A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol. 2005;23:337–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15771574 CrossRefPubMedGoogle Scholar
  92. 92.
    Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol. 2010;28:157–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19968561 CrossRefPubMedGoogle Scholar
  93. 93.
    Daigo K, Inforzato A, Barajon I, Garlanda C, Bottazzi B, Meri S, et al. Pentraxins in the activation and regulation of innate immunity. Immunol Rev. 2016;274:202–17. Available from: http://doi.wiley.com/10.1111/imr.12476 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Daigo K, Takamatsu Y, Hamakubo T. The protective effect against extracellular histones afforded by long-pentraxin PTX3 as a regulator of NETs. Front Immunol. 2016;7:344. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27656184 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol. 2010;11:328–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20208538 CrossRefPubMedGoogle Scholar
  96. 96.
    Vezzoli M, Sciorati C, Campana L, Monno A, Doglio MG, Rigamonti E, et al. Clearance of cell remnants and regeneration of injured muscle depend on soluble pattern recognition receptor PTX3. Mol Med. 2016;22:1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27900389 CrossRefGoogle Scholar
  97. 97.
    Jie H, Li Y, Pu X, Ye J. Pentraxin 3, a predicator for 28-day mortality in patients with septic shock. Am J Med Sci. 2017;353:242–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28262210 CrossRefPubMedGoogle Scholar
  98. 98.
    Caironi P, Masson S, Mauri T, Bottazzi B, Leone R, Magnoli M, et al. Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. Eur J Clin Investig. 2017;47:73–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27864924 CrossRefGoogle Scholar
  99. 99.
    Kim SB, Lee KH, Lee JU, Ann HW, Ahn JY, Jeon YD, et al. Long Pentraxin 3 as a predictive marker of mortality in severe septic patients who received successful early goal-directed therapy. Yonsei Med J. 2017;58:370. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28120568 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    De Smet K, Contreras R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett. 2005;27:1337–47. Available from: http://link.springer.com/10.1007/s10529-005-0936-5 CrossRefPubMedGoogle Scholar
  101. 101.
    Cederlund A, Gudmundsson GH, Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J. 2011;278:3942–51. Available from: http://doi.wiley.com/10.1111/j.1742-4658.2011.08302.x CrossRefPubMedGoogle Scholar
  102. 102.
    Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19:491–511. Available from: http://cmr.asm.org/cgi/doi/10.1128/CMR.00056-05 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28083516 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human antimicrobial peptides in bodily fluids: current knowledge and therapeutic perspectives in the postantibiotic era. Med Res Rev. 2018;38(1):101–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28094448 CrossRefPubMedGoogle Scholar
  105. 105.
    Nuti R, Goud S, Saraswati AP, Alvala R, Alvala M. Antimicrobial peptides: a promising therapeutic strategy in tackling antimicrobial resistance. Curr Med Chem. 2017;24:4303–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28814242 CrossRefPubMedGoogle Scholar
  106. 106.
    Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44:D1087–93. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv1278 CrossRefPubMedGoogle Scholar
  107. 107.
    Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H, et al. DRAMP: a comprehensive data repository of antimicrobial peptides. Sci Rep. 2016;6:24482. Available from: http://www.nature.com/articles/srep24482 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ganz T. Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen. 2005;8:209–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15892623 CrossRefPubMedGoogle Scholar
  109. 109.
    Lehrer RI. Multispecific myeloid defensins. Curr Opin Hematol. 2007;14:16–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17133095 CrossRefPubMedGoogle Scholar
  110. 110.
    Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J, et al. Defensins: natural component of human innate immunity. Hum Immunol. 2013;74:1069–79. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0198885913001493 CrossRefPubMedGoogle Scholar
  111. 111.
    Pero R, Coretti L, Nigro E, Lembo F, Laneri S, Lombardo B, et al. β-Defensins in the fight against Helicobacter pylori. Molecules. 2017;22:424. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28272373 CrossRefGoogle Scholar
  112. 112.
    Dong H, Lv Y, Zhao D, Barrow P, Zhou X. Defensins: the case for their use against mycobacterial infections. J Immunol Res. 2016;2016:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27725944 CrossRefGoogle Scholar
  113. 113.
    Holly MK, Diaz K, Smith JG. Defensins in viral infection and pathogenesis. Annu Rev Virol. 2017;4:369–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28715972 CrossRefPubMedGoogle Scholar
  114. 114.
    Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 2005;7:179–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16053249 PubMedGoogle Scholar
  115. 115.
    Agier J, Efenberger M, Brzezińska-Błaszczyk E. Review paper Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;2:225–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26557038 CrossRefGoogle Scholar
  116. 116.
    Fabisiak A, Murawska N, Fichna J. LL-37: cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Rep. 2016;68:802–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27117377 CrossRefPubMedGoogle Scholar
  117. 117.
    Verjans E-T, Zels S, Luyten W, Landuyt B, Schoofs L. Molecular mechanisms of LL-37-induced receptor activation: an overview. Peptides. 2016;85:16–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27609777 CrossRefPubMedGoogle Scholar
  118. 118.
    Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37—a pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta Biomembr. 2016;1858:546–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26556394 CrossRefGoogle Scholar
  119. 119.
    Redfern RL, Reins RY, McDermott AM. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells. Exp Eye Res. 2011;92:209–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21195713 CrossRefPubMedGoogle Scholar
  120. 120.
    Park K, Elias PM, Oda Y, Mackenzie D, Mauro T, Holleran WM, et al. Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway. J Biol Chem. 2011;286:34121–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21832078 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Carretero M, Escámez MJ, García M, Duarte B, Holguín A, Retamosa L, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol. 2008;128:223–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022202X15336071 CrossRefPubMedGoogle Scholar
  122. 122.
    Pinheiro da Silva F, Machado MCC. The dual role of cathelicidins in systemic inflammation. Immunol Lett. 2017;182:57–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28082134 CrossRefPubMedGoogle Scholar
  123. 123.
    Melino S, Santone C, Di Nardo P, Sarkar B. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs. FEBS J. 2014;281:657–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24219363 CrossRefPubMedGoogle Scholar
  124. 124.
    Paquette DW, Waters GS, Stefanidou VL, Lawrence HP, Friden PM, O’Connor SM, et al. Inhibition of experimental gingivitis in beagle dogs with topical salivary histatins. J Clin Periodontol. 1997;24:216–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9144043 CrossRefPubMedGoogle Scholar
  125. 125.
    Gaglione R, Dell’Olmo E, Bosso A, Chino M, Pane K, Ascione F, et al. Novel human bioactive peptides identified in Apolipoprotein B: evaluation of their therapeutic potential. Biochem Pharmacol. 2017;130:34–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28131846 CrossRefPubMedGoogle Scholar
  126. 126.
    Piotrowska U, Sobczak M, Oledzka E. Current state of a dual behaviour of antimicrobial peptides-therapeutic agents and promising delivery vectors. Chem Biol Drug Des. 2017;90(6):1079–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28548370\CrossRefPubMedGoogle Scholar
  127. 127.
    Mevorach D, Reiner I, Grau A, Ilan U, Berkun Y, Ta-Shma A, et al. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann Neurol. 2016;80:708–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27568864 CrossRefPubMedGoogle Scholar
  128. 128.
    Dilek F, Emin O, Gultepe B, Yazici M, Cakir E, Gedik AH. Evaluation of nasal fluid β-defensin 2 levels in children with allergic rhinitis. Türk Pediatr Arşivi. 2017;52:79–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28747838 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations