Advertisement

Cell-Autonomous (Cell-Intrinsic) Stress Responses

  • Walter Gottlieb Land
Chapter

Abstract

In this chapter, the role of cell-intrinsic stress responses is examined which include autophagic processes, the oxidative stress response, the heat shock response, the unfolded proteins response, and the DNA damage response. Autophagy (macroautophagy, microautophagy, and chaperone-mediated autophagy) is a self-digestive process in response to environmental stress to eukaryotic cells, by which cytoplasmic components are delivered to the lysosome for recycling and degradation. The oxidative stress response is directed against any oxidative stress and is mediated by antioxidative defense systems including antioxidant enzymes such as superoxide dismutase, detoxifying enzymes such as glutathione peroxidase, and energy-dependent efflux pumps. The heat shock response is induced upon exposure of cells to any stress condition and characterized by emission of heat shock proteins which operate as DAMPs to maintain and restore homeostasis. The unfolded protein response is induced by any stress of the endoplasmic reticulum that is perceived by three sensor molecules. Under remediable endoplasmic reticulum stress conditions, the sensors trigger signalling pathways to resolve this stress. However, in severe irremediable endoplasmic reticulum stress, the unfolded protein response may lead to pro-inflammatory and pro-apoptotic responses resulting in regulated cell death. Finally, the DNA damage response is induced by any DNA damage that occurs in a variety of exogenous and endogenous conditions. When successful, this stress response leads to DNA repair and is associated with the emission of various DAMPs which contribute to restoration of homeostasis. When unsuccessful, the DNA damage response, like the unsuccessful unfolded protein response, can result in regulated cell death, either in form of apoptosis or necrosis. Together, the ultimate goal of all the stress responses is to maintain cellular homeostasis and ensure cell integrity. When they fail, the incidence of regulated cell death is frequently observed.

References

  1. 1.
    Moretti J, Blander JM. Cell-autonomous stress responses in innate immunity. J Leukoc Biol. 2017;101:77–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27733577 PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–37. Available from: http://www.nature.com/doifinder/10.1038/nri3532 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Liu X, Cao H, Li J, Wang B, Zhang P, Dong Zhang X, et al. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ. 2017;24:683–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28157209 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23406030 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992;119:301–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1400575 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18006683 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93. Available from: http://www.annualreviews.org/doi/10.1146/annurev-genet-102808-114910 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22. Available from: http://www.nature.com/doifinder/10.1038/ncb0910-814 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22:124–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0955067409002282 CrossRefGoogle Scholar
  10. 10.
    Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;2017:e201796697. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28596378 Google Scholar
  11. 11.
    Tooze SA, Abada A, Elazar Z. Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb Perspect Biol. 2014;6:a018358. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a018358 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bhattacharyya S, Yu H, Mim C, Matouschek A. Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol. 2014;15:122–33. Available from: http://www.nature.com/doifinder/10.1038/nrm3741 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sriram SM, Kim BY, Kwon YT. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol. 2011;12:735–47. Available from: http://www.nature.com/doifinder/10.1038/nrm3217 PubMedCrossRefGoogle Scholar
  14. 14.
    Xu Z, Klionsky DJ. The AMPK-SKP2-CARM1 axis links nutrient sensing to transcriptional and epigenetic regulation of autophagy. Ann Transl Med. 2016;4:S7. Available from: http://atm.amegroups.com/article/view/11566/12702 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12. Available from: http://doi.wiley.com/10.1002/path.2697 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75. Available from: http://www.nature.com/doifinder/10.1038/nature06639 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    McKnight NC, Zhenyu Y. Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr Pathobiol Rep. 2013;1:231–8. Available from: http://link.springer.com/10.1007/s40139-013-0028-5 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Füllgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15:65–74. Available from: http://www.nature.com/doifinder/10.1038/nrm3716 PubMedCrossRefGoogle Scholar
  19. 19.
    Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1204592 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell. 2013;50:16–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276513000889 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell. Biol. 2005;25:6798–810. Available from: http://mcb.asm.org/cgi/doi/10.1128/MCB.25.15.6798-6810.2005 Google Scholar
  22. 22.
    Shin H-JR, Kim H, Oh S, Lee J-G, Kee M, Ko H-J, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553–7. Available from: http://www.nature.com/doifinder/10.1038/nature18014 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tukaj C. The significance of macroautophagy in health and disease. Folia Morphol (Warsz). 2013;72:87–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23740493 CrossRefGoogle Scholar
  24. 24.
    Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14. Available from: http://www.nature.com/doifinder/10.1038/nrm3028 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tan S, Wong E. Mitophagy transcriptome: mechanistic insights into polyphenol-mediated mitophagy. Oxidative Med Cell Longev. 2017;2017:1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28626500 CrossRefGoogle Scholar
  26. 26.
    Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3:285–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17351330 CrossRefGoogle Scholar
  27. 27.
    Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci. 2014;127:4078–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25052096 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Nakatogawa H. Eating the ER and the nucleus for survival under starvation conditions. Mol Cell Oncol. 2016;3:e1073416. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27308592 PubMedCrossRefGoogle Scholar
  29. 29.
    Lipatova Z, Segev N. A role for macro-ER-phagy in ER quality control. PLoS Genet. 2015;11:e1005390. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26181331 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21646866 PubMedCrossRefGoogle Scholar
  31. 31.
    Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15:713–20. Available from: http://www.nature.com/doifinder/10.1038/ncb2788 PubMedCrossRefGoogle Scholar
  32. 32.
    Li W, Li J, Bao J. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69:1125–36. Available from: http://link.springer.com/10.1007/s00018-011-0865-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, et al. Chaperone-mediated autophagy at a glance. J Cell Sci. 2011;124:495–9. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.073874 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22:407–17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0962892412000931 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283:2403–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26854402 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24281265 PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Q, Kang R, Zeh HJ, Lotze MT, Tang D. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy. 2013;9:451–8. Available from: http://www.tandfonline.com/doi/abs/10.4161/auto.23691 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25904867 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Martins I, Michaud M, Sukkurwala AQ, Adjemian S, Ma Y, Shen S, et al. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy. 2012;8:413–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22361584 PubMedCrossRefGoogle Scholar
  40. 40.
    Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23852373 PubMedCrossRefGoogle Scholar
  41. 41.
    Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ. Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res. 2011;9:462–75. Available from: http://mcr.aacrjournals.org/cgi/doi/10.1158/1541-7786.MCR-10-0473 PubMedCrossRefGoogle Scholar
  42. 42.
    Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K-Q, et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A. 2007;104:14050–5. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0704014104 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tang D, Kang R, Livesey KM, Cheh C-W, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200911078 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Li X, Wang S, Chen Y, Liu G, Yang X. miR-22 targets the 3′ UTR of HMGB1 and inhibits the HMGB1-associated autophagy in osteosarcoma cells during chemotherapy. Tumour Biol. 2014;35:6021–8. Available from: http://link.springer.com/10.1007/s13277-014-1797-0 PubMedCrossRefGoogle Scholar
  45. 45.
    Pan B, Chen D, Huang J, Wang R, Feng B, Song H, et al. HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma. Mol Cancer. 2014;13:165. Available from: http://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-13-165 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhang R, Li Y, Wang Z, Chen L, Dong X, Nie X. Interference with HMGB1 increases the sensitivity to chemotherapy drugs by inhibiting HMGB1-mediated cell autophagy and inducing cell apoptosis. Tumour Biol. 2015;36:8585–92. Available from: http://link.springer.com/10.1007/s13277-015-3617-6 PubMedCrossRefGoogle Scholar
  47. 47.
    Liu W, Zhang Z, Zhang Y, Chen X, Guo S, Lei Y, et al. HMGB1-mediated autophagy modulates sensitivity of colorectal cancer cells to oxaliplatin via MEK/ERK signaling pathway. Cancer Biol Ther. 2015;16:511–7. Available from: http://www.tandfonline.com/doi/full/10.1080/15384047.2015.1017691 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mou K, Liu W, Han D, Li P. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death. J Dermatol Sci. 2017;85:162–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28012822 PubMedCrossRefGoogle Scholar
  49. 49.
    Cheng L, Li J, Liu Y, Wang F, Wang S, She W, et al. HMGB1-induced autophagy: a new pathway to maintain Treg function during chronic hepatitis B virus infection. Clin Sci. 2017;131:381–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28082516 PubMedCrossRefGoogle Scholar
  50. 50.
    Li D, Lu N, Wang B, Deng X, Zhao H, Wang Y. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage: the neuroprotective effects of adenosine triphosphate against apoptosis. Neural Regen Res. 2014;9:1599. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25368646 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    van der Vaart M, Korbee CJ, Lamers GEM, Tengeler AC, Hosseini R, Haks MC, et al. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense [corrected]. Cell Host Microbe. 2014;15:753–67. Available from: http://linkinghub.elsevier.com/retrieve/pii/S193131281400153X PubMedCrossRefGoogle Scholar
  52. 52.
    Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 2014;9:180–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25284779 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meijer AH, van der Vaart M. DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy. 2014;10:2389–91. Available from: http://www.tandfonline.com/doi/full/10.4161/15548627.2014.984280 PubMedCrossRefGoogle Scholar
  54. 54.
    Franco LH, Fleuri AKA, Pellison NC, Quirino GFS, Horta CV, de CRVH, et al. Autophagy downstream of endosomal Toll-like receptors signaling in macrophages is a key mechanism for resistance to leishmania major infection. J Biol Chem. 2017;292:13087–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28607148 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lim JS, Kim HS, Nguyen KCT, Cho KA. The role of TLR9 in stress-dependent autophagy formation. Biochem Biophys Res Commun. 2016;481:219–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27793667 PubMedCrossRefGoogle Scholar
  56. 56.
    Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–48. Available from: http://www.annualreviews.org/doi/10.1146/annurev-biochem-061516-045037 CrossRefGoogle Scholar
  57. 57.
    Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24845678 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. In:OUP Oxford. 5th ed; 2015.Google Scholar
  59. 59.
    Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, et al. Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res. 2003;54:516–22. Available from: http://www.nature.com/doifinder/10.1203/01.PDR.0000081297.53793.C6 PubMedCrossRefGoogle Scholar
  60. 60.
    Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 2013;1:353–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2213231713000463 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zweier JL, Talukder MAH. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70:181–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16580655 PubMedCrossRefGoogle Scholar
  62. 62.
    Sasaki M, Joh T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J Clin Biochem Nutr. 2007;40:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18437208 PubMedCrossRefGoogle Scholar
  63. 63.
    Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17237347 CrossRefGoogle Scholar
  64. 64.
    Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol. 2009;296:C422–32. Available from: http://ajpcell.physiology.org/cgi/doi/10.1152/ajpcell.00381.2008 PubMedCrossRefGoogle Scholar
  65. 65.
    Pendyala S, Natarajan V. Redox regulation of Nox proteins. Respir Physiol Neurobiol. 2010;174:265–71. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1569904810003721 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010;30:653–61. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.108.181610 PubMedCrossRefGoogle Scholar
  67. 67.
    Chandel NS. Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol. 2010;174:175–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20708106 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Guillaud F, Dröse S, Kowald A, Brandt U, Klipp E. Superoxide production by cytochrome bc1 complex: a mathematical model. Biochim Biophys Acta Bioenerg. 2014;1837:1643–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24911293 CrossRefGoogle Scholar
  69. 69.
    Chen Y-R, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524–37. Available from: http://circres.ahajournals.org/cgi/doi/10.1161/CIRCRESAHA.114.300559 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998;95:11715–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9751731 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013;1:304–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24024165 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14561818 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Baudry N, Laemmel E, Vicaut E. In vivo reactive oxygen species production induced by ischemia in muscle arterioles of mice: involvement of xanthine oxidase and mitochondria. Am J Physiol Heart Circ Physiol. 2008;294:H821–8. Available from: http://ajpheart.physiology.org/cgi/doi/10.1152/ajpheart.00378.2007 PubMedCrossRefGoogle Scholar
  74. 74.
    Kim EM, Park JK, Hwang S-G, Kim W-J, Liu Z-G, Kang SW, et al. Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory complex-I activity via Bcl-2 family proteins. Oncotarget. 2014;5:8452–65. Available from: http://oncotarget.com/abstract/2320 PubMedPubMedCentralGoogle Scholar
  75. 75.
    He X, Zhou A, Lu H, Chen Y, Huang G, Yue X, et al. Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One. 2013;8:e61677. Available from: http://dx.plos.org/10.1371/journal.pone.0061677 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier A-L, Grimm S. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ. 2011;18:338–49. Available from: http://www.nature.com/doifinder/10.1038/cdd.2010.93 PubMedCrossRefGoogle Scholar
  77. 77.
    Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GRS, et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–36. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.200609074 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jung HJ, Kwon HJ. Exploring the role of mitochondrial UQCRB in angiogenesis using small molecules. Mol BioSyst. 2013;9:930–9. Available from: http://xlink.rsc.org/?DOI=c3mb25426g PubMedCrossRefGoogle Scholar
  79. 79.
    Jung HJ, Cho M, Kim Y, Han G, Kwon HJ. Development of a novel class of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) modulators as promising antiangiogenic leads. J Med Chem. 2014;57:7990–8. Available from: http://pubs.acs.org/doi/abs/10.1021/jm500863j PubMedCrossRefGoogle Scholar
  80. 80.
    Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, et al. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med. 2013;187:424–32. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.201207-1294OC PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Weissmann N, Zeller S, Schäfer RU, Turowski C, Ay M, Quanz K, et al. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol. 2006;34:505–13. Available from: http://www.atsjournals.org/doi/abs/10.1165/rcmb.2005-0337OC PubMedCrossRefGoogle Scholar
  82. 82.
    Fuchs B, Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Grimminger F, et al. Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2010;174:282–91. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1569904810003174 PubMedCrossRefGoogle Scholar
  83. 83.
    Rathore R, Zheng Y-M, Niu C-F, Liu Q-H, Korde A, Ho Y-S, et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med. 2008;45:1223–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0891584908003651 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999;31:273–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10517533 PubMedCrossRefGoogle Scholar
  85. 85.
    Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24647116 PubMedCrossRefGoogle Scholar
  86. 86.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9887101 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19666107 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2—an update. Free Radic Biol Med. 2014;66:36–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23434765 PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang Y, Xiang Y. Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homeostasis and organ integrity. Biochem J. 2016;473:961–1000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27060105 PubMedCrossRefGoogle Scholar
  90. 90.
    Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol. 2017;7:85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28523248 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1–Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 2017;9:41–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28510041 PubMedCrossRefGoogle Scholar
  92. 92.
    Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, et al. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol. 2015;36:MCB.00868-15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26527616 CrossRefGoogle Scholar
  93. 93.
    Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys. 2017;617:84–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27497696 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sihvola V, Levonen A-L. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys. 2017;617:94–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27769838 PubMedCrossRefGoogle Scholar
  95. 95.
    Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001;6:857–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11683914 PubMedCrossRefGoogle Scholar
  96. 96.
    Chen X-L, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des. 2004;10:879–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15032691 PubMedCrossRefGoogle Scholar
  97. 97.
    Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One. 2014;e98896:9. Available from: http://dx.plos.org/10.1371/journal.pone.0098896 Google Scholar
  98. 98.
    Lee J-M, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol. 2004;37:139–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15469687 Google Scholar
  99. 99.
    Otsuki A, Suzuki M, Katsuoka F, Tsuchida K, Suda H, Morita M, et al. Unique cistrome defined as CsMBE is strictly required for Nrf2-sMaf heterodimer function in cytoprotection. Free Radic Biol Med. 2016;91:45–57. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0891584915011478 PubMedCrossRefGoogle Scholar
  100. 100.
    Yin S, Cao W. Toll-like receptor signaling induces Nrf2 pathway activation through p62-triggered Keap1 degradation. Mol Cell Biol. 2015;35:2673–83. Available from: http://mcb.asm.org/lookup/doi/10.1128/MCB.00105-15 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7:385–94. Available from: http://www.liebertonline.com/doi/abs/10.1089/ars.2005.7.385 CrossRefGoogle Scholar
  102. 102.
    Fuse Y, Kobayashi M. Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules. 2017;22:436. Available from: http://www.mdpi.com/1420-3049/22/3/436 CrossRefGoogle Scholar
  103. 103.
    Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991;66:191–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1855252 PubMedCrossRefGoogle Scholar
  104. 104.
    Schlesinger MJ. Heat shock in vertebrate cells. Cell Stress Chaperones. 1996;1:213–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9222606 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part II: role of reactive oxygen species in the induction of the heat shock response as a regulator of innate. Transplant Rev. 2003;17:31–44. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0955470X0380006X CrossRefGoogle Scholar
  106. 106.
    Beere HM. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004;117:2641–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15169835 PubMedCrossRefGoogle Scholar
  107. 107.
    Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem. 2005;280:33097–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16076838 PubMedCrossRefGoogle Scholar
  108. 108.
    Land WG. Innate alloimmunity Part 2: Innate immunity and allograft rejection. Ankara: Baskent University; Lengerich: Pabst Science Publishers; 2011. Available from: ISBN 978-3-89967-738-6Google Scholar
  109. 109.
    Kennedy D, Jäger R, Mosser DD, Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life. 2014;66:327–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24861574 PubMedCrossRefGoogle Scholar
  110. 110.
    Kityk R, Vogel M, Schlecht R, Bukau B, Mayer MP. Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun. 2015;6:8308. Available from: http://www.nature.com/doifinder/10.1038/ncomms9308 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mambula SS, Stevenson MA, Ogawa K, Calderwood SK. Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods. 2007;43:168–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17920512 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Calderwood SK, Mambula SS, Gray PJ, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett. 2007;581:3689–94. Available from: http://doi.wiley.com/10.1016/j.febslet.2007.04.044 PubMedCrossRefGoogle Scholar
  113. 113.
    Merendino AM, Bucchieri F, Campanella C, Marcianò V, Ribbene A, David S, et al. Hsp60 is actively secreted by human tumor cells. PLoS One. 2010;5:e9247. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20169074 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DFV, et al. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One. 2012;7:e42008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22848686 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hayoun D, Kapp T, Edri-Brami M, Ventura T, Cohen M, Avidan A, et al. HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J. 2012;279:2083–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22487187 PubMedCrossRefGoogle Scholar
  116. 116.
    Kose S, Imamoto N. Nucleocytoplasmic transport under stress conditions and its role in HSP70 chaperone systems. Biochim Biophys Acta. 2014;1840:2953–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24797038 PubMedCrossRefGoogle Scholar
  117. 117.
    Zhu H, Fang X, Zhang D, Wu W, Shao M, Wang L, et al. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis. 2016;21:96–109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26481477 PubMedCrossRefGoogle Scholar
  118. 118.
    Land WG. Emerging role of innate immunity in organ transplantation part II: potential of damage-associated molecular patterns to generate immunostimulatory dendritic cells. Transplant Rev (Orlando). 2012;26:73–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22074784 CrossRefGoogle Scholar
  119. 119.
    Land WG. Emerging role of innate immunity in organ transplantation: part I: evolution of innate immunity and oxidative allograft injury. Transplant Rev (Orlando). 2012;26:60–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22000662 CrossRefGoogle Scholar
  120. 120.
    Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. 2008;183:111–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18071657 CrossRefGoogle Scholar
  121. 121.
    Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis. 2010;15:1050–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20221698 PubMedCrossRefGoogle Scholar
  122. 122.
    Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26635802 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Zunino B, Rubio-Patiño C, Villa E, Meynet O, Proics E, Cornille A, et al. Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene. 2016;35:261–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25867070 PubMedCrossRefGoogle Scholar
  124. 124.
    Pirkkala L, Nykänen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15:1118–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11344080 CrossRefGoogle Scholar
  125. 125.
    Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation. 1999;99:934–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10027818 PubMedCrossRefGoogle Scholar
  126. 126.
    Jiang S, Tu K, Fu Q, Schmitt DC, Zhou L, Lu N, et al. Multifaceted roles of HSF1 in cancer. Tumour Biol. 2015;36:4923–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26108999 PubMedCrossRefGoogle Scholar
  127. 127.
    Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55. Available from: http://www.nature.com/doifinder/10.1038/nrm2938 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci U S A. 1990;87:3748–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2339118 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Balogh G, Horváth I, Nagy E, Hoyk Z, Benkõ S, Bensaude O, et al. The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J. 2005;272:6077–86. Available from: http://doi.wiley.com/10.1111/j.1742-4658.2005.04999.x PubMedCrossRefGoogle Scholar
  130. 130.
    Bromberg Z, Goloubinoff P, Saidi Y, Weiss YG. The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells. PLoS One. 2013;8:e57149. Available from: http://dx.plos.org/10.1371/journal.pone.0057149 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Szöllősi AG, Oláh A, Tóth IB, Papp F, Czifra G, Panyi G, et al. Transient receptor potential vanilloid-2 mediates the effects of transient heat shock on endocytosis of human monocyte-derived dendritic cells. FEBS Lett. 2013;587:1440–5. Available from: http://doi.wiley.com/10.1016/j.febslet.2013.03.027 PubMedCrossRefGoogle Scholar
  132. 132.
    Yang Q, Shi Y, Yang Y, Lou G, Chen Z. The sterile inflammation in the exacerbation of HBV-associated liver injury. Mediat Inflamm. 2015;2015:1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25892853 Google Scholar
  133. 133.
    Hu J, Flores D, Toft D, Wang X, Nguyen D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol. 2004;78:13122–31. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.78.23.13122-13131.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wang Y-P, Liu F, He H-W, Han Y-X, Peng Z-G, Li B-W, et al. Heat stress cognate 70 host protein as a potential drug target against drug resistance in hepatitis B virus. Antimicrob Agents Chemother. 2010;54:2070–7. Available from: http://aac.asm.org/cgi/doi/10.1128/AAC.01764-09 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Zhou Y-B, Wang Y-F, Zhang Y, Zheng L-Y, Yang X-A, Wang N, et al. In vitro activity of cepharanthine hydrochloride against clinical wild-type and lamivudine-resistant hepatitis B virus isolates. Eur J Pharmacol. 2012;683:10–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0014299912001665 PubMedCrossRefGoogle Scholar
  136. 136.
    Hasday JD, Thompson C, Singh IS. Fever, immunity, and molecular adaptations. Compr Physiol. 2014;4:109–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24692136 PubMedCrossRefGoogle Scholar
  137. 137.
    Shekhawat SD, Jain RK, Gaherwar HM, Purohit HJ, Taori GM, Daginawala HF, et al. Heat shock proteins: possible biomarkers in pulmonary and extrapulmonary tuberculosis. Hum Immunol. 2014;75:151–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24269695 PubMedCrossRefGoogle Scholar
  138. 138.
    Pierzchalski P, Jastrzebska M, Link-Lenczowski P, Leja-Szpak A, Bonior J, Jaworek J, et al. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection. J Physiol Pharmacol. 2014;65:791–800. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25554983 PubMedGoogle Scholar
  139. 139.
    Klingspor S, Bondzio A, Martens H, Aschenbach JR, Bratz K, Tedin K, et al. Enterococcus faecium NCIMB 10415 modulates epithelial integrity, heat shock protein, and proinflammatory cytokine response in intestinal cells. Mediat Inflamm. 2015;2015:1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25948884 CrossRefGoogle Scholar
  140. 140.
    Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15952902 PubMedCrossRefGoogle Scholar
  141. 141.
    Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17565364 CrossRefGoogle Scholar
  142. 142.
    Wang Q, Groenendyk J, Michalak M. Glycoprotein quality control and endoplasmic reticulum stress. Molecules. 2015;20:13689–704. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26225950 PubMedCrossRefGoogle Scholar
  143. 143.
    Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteostasis. Int J Mol Sci. 2015;16:17193–230. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26225966 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. Available from: http://www.nature.com/doifinder/10.1038/cdd.2015.158 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Hofmans S, Vanden Berghe T, Devisscher L, Hassannia B, Lyssens S, Joossens J, et al. Novel ferroptosis inhibitors with improved potency and ADME properties. J Med Chem. 2016;59:2041–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26696014 PubMedCrossRefGoogle Scholar
  146. 146.
    Kuznetsov G, Bush KT, Zhang PL, Nigam SK. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Proc Natl Acad Sci U S A. 1996;93:8584–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8710914 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci. 2014;13:474–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24493131 PubMedCrossRefGoogle Scholar
  148. 148.
    van Vliet AR, Martin S, Garg AD, Agostinis P. The PERKs of damage-associated molecular patterns mediating cancer immunogenicity: from sensor to the plasma membrane and beyond. Semin Cancer Biol. 2015;33:74–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1044579X15000255 PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Rodvold JJ, Mahadevan NR, Zanetti M. Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett. 2016;380:227–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26525580 PubMedCrossRefGoogle Scholar
  150. 150.
    Dandekar A, Mendez R, Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol. 2015;1292:205–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25804758 PubMedCrossRefGoogle Scholar
  151. 151.
    Dorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992;11:1563–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1373378 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Lewy TG, Grabowski JM, Bloom ME. BiP: master regulator of the unfolded protein response and crucial factor in flavivirus biology. Yale J Biol Med. 2017;90:291–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28656015 PubMedPubMedCentralGoogle Scholar
  153. 153.
    Martinon F, Glimcher LH. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr Opin Immunol. 2011;23:35–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21094031 PubMedCrossRefGoogle Scholar
  154. 154.
    Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21364565 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22733998 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24702237 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17:829–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26123108 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Zhu X, Yao F, Yao Y, Dong N, Yu Y, Sheng Z. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol. 2012;44:1097–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22504285 PubMedCrossRefGoogle Scholar
  159. 159.
    Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci. 2015;2:29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26097841 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Spiro RG, Zhu Q, Bhoyroo V, Söling HD. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem. 1996;271:11588–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8626722 PubMedCrossRefGoogle Scholar
  161. 161.
    Trevelin SC, Lopes LR. Protein disulfide isomerase and Nox: new partners in redox signaling. Curr Pharm Des. 2015;21:5951–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26510433 PubMedCrossRefGoogle Scholar
  162. 162.
    Carreras-Sureda A, Pihán P, Hetz C. The unfolded protein response: at the intersection between endoplasmic reticulum function and mitochondrial bioenergetics. Front Oncol. 2017;7:55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28421160 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Chong W, Shastri M, Eri R. Endoplasmic reticulum stress and oxidative stress: a vicious nexus implicated in bowel disease pathophysiology. Int J Mol Sci. 2017;18:771. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28379196 PubMedCentralCrossRefPubMedGoogle Scholar
  164. 164.
    Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31:1062–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22252128 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P. Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity. Front Oncol. 2015;5:7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25688334 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 2008;15:1499–509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18464797 PubMedCrossRefGoogle Scholar
  167. 167.
    Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund A-C, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28:578–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19165151 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, Lippincott-Schwartz J. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell. 2014;158:522–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25083867 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25324778 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26549800 PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20023662 CrossRefGoogle Scholar
  172. 172.
    Lerner AG, Upton J-P, Praveen PVK, Ghosh R, Nakagawa Y, Igbaria A, et al. IRE-1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012;16:250–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22883233 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Khan MM, Yang W-L, Wang P. Endoplasmic reticulum stress in sepsis. Shock. 2015;44:294–304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26125088 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E, et al. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med. 2015;88:233–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26051167 PubMedCrossRefGoogle Scholar
  175. 175.
    Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23800749 PubMedCrossRefGoogle Scholar
  176. 176.
    Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39:211–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23973220 PubMedCrossRefGoogle Scholar
  177. 177.
    Bhattacharya A, Eissa NT. Autophagy as a stress response pathway in the immune system. Int Rev Immunol. 2015;34:382–402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25699578 PubMedCrossRefGoogle Scholar
  178. 178.
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22878108 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20148665 PubMedCrossRefGoogle Scholar
  180. 180.
    Lee W-S, Yoo W-H, Chae H-J. ER stress and autophagy. Curr Mol Med. 2015;15:735–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26391548 PubMedCrossRefGoogle Scholar
  181. 181.
    Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44:73–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22257882 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Thapalia BA, Zhou Z, Lin X. Autophagy, a process within reperfusion injury: an update. Int J Clin Exp Pathol. 2014;7:8322–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25674198 PubMedPubMedCentralGoogle Scholar
  183. 183.
    Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 2015;35:615–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25722131 PubMedCrossRefGoogle Scholar
  184. 184.
    Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17237344 CrossRefGoogle Scholar
  185. 185.
    Galluzzi L, Morselli E, Kepp O, Kroemer G. Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta. 2009;1787:402–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18848916 PubMedCrossRefGoogle Scholar
  186. 186.
    Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19182083 PubMedCrossRefGoogle Scholar
  187. 187.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21760595 CrossRefGoogle Scholar
  188. 188.
    Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol. 2015;78:129–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25179911 PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fésüs L. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One. 2012;7:e40069. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22768222 PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis. 2013;4:e826. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24091669 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochim Biophys Acta. 2013;1833:3507–17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S016748891300311X PubMedCrossRefGoogle Scholar
  192. 192.
    Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. elife. 2014;e02523:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24844246 Google Scholar
  193. 193.
    Frabutt D, Zheng Y-H. Arms race between enveloped viruses and the host ERAD machinery. Virus. 2016;8:255. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27657106 CrossRefGoogle Scholar
  194. 194.
    Dash S, Chava S, Aydin Y, Chandra P, Ferraris P, Chen W, et al. Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Virus. 2016;8:150. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27223299 CrossRefGoogle Scholar
  195. 195.
    Cervantes-Ortiz S, Zamorano Cuervo N, Grandvaux N. Respiratory syncytial virus and cellular stress responses: impact on replication and physiopathology. Virus. 2016;8:124. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27187445 CrossRefGoogle Scholar
  196. 196.
    Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 2016;532:394–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27007849 PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Byndloss MX, Keestra-Gounder AM, Bäumler AJ, Tsolis RM. NOD1 and NOD2: new functions linking endoplasmic reticulum stress and inflammation. DNA Cell Biol. 2016;35:311–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27341284 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Li S, Kong L, Yu X. The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Crit Rev Microbiol. 2015;41:150–64. Available from: http://www.tandfonline.com/doi/full/10.3109/1040841X.2013.813899 PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Williams BR. Signal integration via PKR. Sci STKE. 2001;2001:re2. Available from: http://stke.sciencemag.org/cgi/doi/10.1126/stke.2001.89.re2 PubMedGoogle Scholar
  200. 200.
    Pahl HL, Baeuerle PA. Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol. 1995;69:1480–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7853480 PubMedPubMedCentralGoogle Scholar
  201. 201.
    Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 1995;14:2580–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7781611 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Jheng J-R, Ho J-Y, Horng J-T. ER stress, autophagy, and RNA viruses. Front Microbiol. 2014;5:388. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25140166 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Celli J, Tsolis RM. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol. 2014;13:71–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25534809 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Land WG. The role of damage-associated molecular patterns in human diseases: part I – promoting inflammation and immunity. Sultan Qaboos Univ Med J. 2015;15:e9–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25685392 PubMedPubMedCentralGoogle Scholar
  205. 205.
    Land WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J. 2015;15:e157–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26052447 PubMedPubMedCentralGoogle Scholar
  206. 206.
    Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent insights into the role of unfolded protein response in ER stress in health and disease. Front Cell Dev Biol. 2017;5:48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28540288 PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Das I, Krzyzosiak A, Schneider K, Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.aaa4484 PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Gallagher CM, Garri C, Cain EL, Ang KK-H, Wilson CG, Chen S, et al. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. elife. 2016;5:e11878. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.11878 PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Plate L, Paxman RJ, Wiseman RL, Kelly JW. Modulating protein quality control. elife. 2016;5:e18431. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.18431 PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Weitzman MD, Weitzman JB. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe. 2014;15:283–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24629335 PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res. 2011;711:193–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21216256 PubMedCrossRefGoogle Scholar
  212. 212.
    Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21:998–1012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24583638 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Glebova K, Veiko N, Kostyuk S, Izhevskaya V, Baranova A. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy. Cancer Lett. 2015;356:22–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24045040 PubMedCrossRefGoogle Scholar
  214. 214.
    Weyemi U, Dupuy C. The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses. Mutat Res. 2012;751:77–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22580379 PubMedCrossRefGoogle Scholar
  215. 215.
    Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B. Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev. 2012;133:157–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22313689 PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Hills SA, Diffley JFX. DNA replication and oncogene-induced replicative stress. Curr Biol. 2014;24:R435–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24845676 PubMedCrossRefGoogle Scholar
  217. 217.
    Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14:405–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25953507 PubMedCrossRefGoogle Scholar
  218. 218.
    Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015;15:276–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25907220 PubMedCrossRefGoogle Scholar
  219. 219.
    Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20177396 PubMedCrossRefGoogle Scholar
  220. 220.
    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19847258 PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276510007471 PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. Autophagy in DNA damage response. Int J Mol Sci. 2015;16:2641–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25625517 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332:237–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22261329 PubMedCrossRefGoogle Scholar
  224. 224.
    Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5:a012716. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24003211 PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15189136 CrossRefGoogle Scholar
  226. 226.
    Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276517303544 CrossRefGoogle Scholar
  227. 227.
    Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910633 PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol. 2016;51:195–212. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27098756 PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Blackford AN. Personal communication.Google Scholar
  230. 230.
    Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11. Available from: http://www.nature.com/doifinder/10.1038/nature03442 PubMedCrossRefGoogle Scholar
  231. 231.
    Jette N, Lees-Miller SP. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog Biophys Mol Biol. 2015;117:194–205. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0079610714001886 PubMedCrossRefGoogle Scholar
  232. 232.
    Graham TGW, Walter JC, Loparo JJ. Two-stage synapsis of DNA ends during non-homologous end joining. Mol Cell. 2016;61:850–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276516000940 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Maréchal A, Li J-M, Ji XY, Wu C-S, Yazinski SA, Nguyen HD, et al. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell. 2014;53:235–46. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276513008277 PubMedCrossRefGoogle Scholar
  234. 234.
    Dubois J-C, Yates M, Gaudreau-Lapierre A, Clément G, Cappadocia L, Gaudreau L, et al. A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Res. 2017;45(15):8859–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28666352 PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Härtlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25692705 PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Le Bert N, Lam AR, Ho SS, Shen YJ, Liu MM, Gasser S. STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression. Oncoimmunology. 2014;3:e29259. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25114832 PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298206 PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436:1186–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15995699 PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Lam AR, Le Bert N, Ho SSW, Shen YJ, Tang MLF, Xiong GM, et al. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res. 2014;74:2193–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24590060 PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V, et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood. 2009;113:3503–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19098271 CrossRefGoogle Scholar
  241. 241.
    Kutuk O, Aytan N, Karakas B, Kurt AG, Acikbas U, Temel SG, et al. Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells. PLoS One. 2017;e0182809:12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28796811 Google Scholar
  242. 242.
    Feng Y, Klionsky DJ. Autophagy regulates DNA repair through SQSTM1/p62. Autophagy. 2017;13:995–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28650265 PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol. 2015;5:11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25692096 PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Lu X-H, Mattis VB, Wang N, Al-Ramahi I, van den Berg N, Fratantoni SA, et al. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington’s disease. Sci Transl Med. 2014;6:268ra178. Available from: http://stm.sciencemag.org/cgi/doi/10.1126/scitranslmed.3010523 PubMedCrossRefGoogle Scholar
  245. 245.
    Andrs M, Korabecny J, Jun D, Hodny Z, Bartek J, Kuca K. Phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring. J Med Chem. 2015;58:41–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25387153 PubMedCrossRefGoogle Scholar
  246. 246.
    Sundar R, Brown J, Ingles Russo A, Yap TA. Targeting ATR in cancer medicine. Curr Probl Cancer. 2017;41:302–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0147027217300545 PubMedCrossRefGoogle Scholar
  247. 247.
    Dröse S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem. 2008;283:21649–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18522938 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations