Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs)

  • Walter Gottlieb Land


This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.


  1. 1.
    Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78. Available from: CrossRefPubMedGoogle Scholar
  2. 2.
    Land WG. Emerging role of innate immunity in organ transplantation part II: potential of damage-associated molecular patterns to generate immunostimulatory dendritic cells. Transplant Rev (Orlando). 2012;26:73–87. Available from: CrossRefGoogle Scholar
  3. 3.
    Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14:1315–35. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276:425–43. Available from: CrossRefPubMedGoogle Scholar
  5. 5.
    Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. 2008;183:111–27. Available from: CrossRefGoogle Scholar
  6. 6.
    Land WG. Role of heat shock protein 70 in innate alloimmunity. Front Immunol. 2011;2:89. Available from: PubMedGoogle Scholar
  7. 7.
    Miyake Y, Yamasaki S. Sensing necrotic cells. Adv Exp Med Biol. 2012;738:144–52. Available from: CrossRefPubMedGoogle Scholar
  8. 8.
    Schiopu A, Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm. 2013;2013:828354. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacol Ther. 2016.; Available from:
  10. 10.
    Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 2012;2:168. Available from: PubMedGoogle Scholar
  11. 11.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pardo M, Budick-Harmelin N, Tirosh B, Tirosh O. Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Radic Biol Med. 2008;45:1073–83. Available from: CrossRefPubMedGoogle Scholar
  13. 13.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. Available from: CrossRefPubMedGoogle Scholar
  14. 14.
    Hansen JD, Vojtech LN, Laing KJ. Sensing disease and danger: a survey of vertebrate PRRs and their origins. Dev Comp Immunol. 2011;35:886–97. Available from: CrossRefPubMedGoogle Scholar
  15. 15.
    Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog. 2013;e1003417:9. Available from: Google Scholar
  16. 16.
    Lee EJ, Park JH. Receptor for advanced glycation endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform. 2013;11:224–9. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ratsimandresy RA, Dorfleutner A, Stehlik C. An update on PYRIN domain-containing pattern recognition receptors: from immunity to pathology. Front Immunol. 2013;4:440. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology. 2013;218:1312–21. Available from: CrossRefPubMedGoogle Scholar
  19. 19.
    Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;4:333. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Alessandra P, Sergio C. NOD-like receptors: a tail from plants to mammals through invertebrates. Curr Protein Pept Sci. 2016.; Available from:
  21. 21.
    Sohn J, Hur S. Filament assemblies in foreign nucleic acid sensors. Curr Opin Struct Biol. 2016;37:134–44. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Portou MJJ, Baker D, Abraham D, Tsui J. The innate immune system, toll-like receptors and dermal wound healing: a review. Vascul Pharmacol. 2015;71:31–6. Available from: CrossRefPubMedGoogle Scholar
  23. 23.
    Campana L, Santarella F, Esposito A, Maugeri N, Rigamonti E, Monno A, et al. Leukocyte HMGB1 is required for vessel remodeling in regenerating muscles. J Immunol. 2014;192:5257–64. Available from: CrossRefPubMedGoogle Scholar
  24. 24.
    Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200. Available from: CrossRefPubMedGoogle Scholar
  25. 25.
    Anders H-J, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol. 2014;25:1387–400. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nakagawa S, Omura T, Yonezawa A, Yano I, Nakagawa T, Matsubara K. Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury. Am J Physiol Renal Physiol. 2014;307:F1404–11. Available from: CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc. 2015;4:e001993. Available from: PubMedPubMedCentralGoogle Scholar
  28. 28.
    Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with toll-like receptor-bearing cells. Transplant Rev. 2003;17:67–86. Available from: CrossRefGoogle Scholar
  29. 29.
    Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38:14–9. Available from: CrossRefPubMedGoogle Scholar
  30. 30.
    Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46. Available from: CrossRefPubMedGoogle Scholar
  31. 31.
    Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:422. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5. Available from: CrossRefPubMedGoogle Scholar
  33. 33.
    Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15:496–506. Available from: CrossRefPubMedGoogle Scholar
  34. 34.
    Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol. 2014;10:713–27. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60–81. Available from: CrossRefPubMedGoogle Scholar
  36. 36.
    Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Aspects Med. 2014;40:1–116. Available from: CrossRefPubMedGoogle Scholar
  37. 37.
    Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476–84. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Malarkey CS, Churchill MEA. The high mobility group box: the ultimate utility player of a cell. Trends Biochem Sci. 2012;37:553–62. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ. HMGB1 as a DNA-binding cytokine. J Leukoc Biol. 2002;72:1084–91. Available from: PubMedGoogle Scholar
  40. 40.
    Wang Q, Zeng M, Wang W, Tang J. The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism. Biochem Biophys Res Commun. 2007;360:14–9. Available from: CrossRefPubMedGoogle Scholar
  41. 41.
    Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sánchez-Giraldo R, Acosta-Reyes FJ, Malarkey CS, Saperas N, Churchill MEA, Campos JL. Two high-mobility group box domains act together to underwind and kink DNA. Acta Crystallogr D Biol Crystallogr. 2015;71:1423–32. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296–301. Available from: CrossRefPubMedGoogle Scholar
  44. 44.
    Palumbo R, De Marchis F, Pusterla T, Conti A, Alessio M, Bianchi ME. Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukoc Biol. 2009;86:617–23. Available from: CrossRefPubMedGoogle Scholar
  45. 45.
    Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209:1519–28. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Beyer C, Pisetsky DS. Modeling nuclear molecule release during in vitro cell death. Autoimmunity. 2013;46:298–301. Available from: CrossRefPubMedGoogle Scholar
  47. 47.
    Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol. 2007;81:741–7. Available from: CrossRefPubMedGoogle Scholar
  48. 48.
    Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:209–23. Available from: CrossRefPubMedGoogle Scholar
  49. 49.
    Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138–46. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and consequences of necroinflammation. Physiol Rev. 2018;98(2):727–80. CrossRefPubMedGoogle Scholar
  51. 51.
    Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int. 2016;89:46–57. Available from: CrossRefPubMedGoogle Scholar
  52. 52.
    Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201:1135–43. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216–26. Available from: CrossRefPubMedGoogle Scholar
  54. 54.
    Cohen MJ, Brohi K, Calfee CS, Rahn P, Chesebro BB, Christiaans SC, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, et al. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32:17–22. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Denk S, Weckbach S. Eisele P. Wiegner R, Ohmann JJ, et al. Role of Hemorrhagic Shock in Experimental Polytrauma. Shock: Braun CK; 2017. Available from: Google Scholar
  57. 57.
    Yang R, Zou X, Tenhunen J, Tønnessen TI. HMGB1 and extracellular histones significantly contribute to systemic inflammation and multiple organ failure in acute liver failure. Mediators Inflamm. 2017;2017:1–6. Available from: Google Scholar
  58. 58.
    Zhou R-R, Liu H-B, Peng J-P, Huang Y, Li N, Xiao M-F, et al. High mobility group box chromosomal protein 1 in acute-on-chronic liver failure patients and mice with ConA-induced acute liver injury. Exp Mol Pathol. 2012;93:213–9. Available from: CrossRefPubMedGoogle Scholar
  59. 59.
    Seo YS, Kwon JH, Yaqoob U, Yang L, De Assuncao TM, Simonetto DA, et al. HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol-induced parenchymal cell injury. Am J Physiol Gastrointest Liver Physiol. 2013;305:G838–48. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang H, Ward MF, Fan X-G, Sama AE, Li W. Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol. 2006;19:3–9. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zheng W, Shi H, Chen Y, Xu Z, Chen J, Jin L. Alteration of serum high-mobility group protein 1 (HMGB1) levels in children with enterovirus 71-induced hand, foot, and mouth disease. Medicine (Baltimore). 2017;96:e6764. Available from: CrossRefGoogle Scholar
  62. 62.
    Resman Rus K, Fajs L, Korva M, Avšič-Županc T. HMGB1 is a potential biomarker for severe viral hemorrhagic fevers. PLoS Negl Trop Dis. 2016;e0004804:10. Available from: Google Scholar
  63. 63.
    Parkkinen J, Raulo E, Merenmies J, Nolo R, Kajander EO, Baumann M, et al. Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides. Enhanced expression in transformed cells, leading edge localization, and interactions with plasminogen activation. J Biol Chem. 1993;268:19726–38. Available from: PubMedGoogle Scholar
  64. 64.
    Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger C-J, Arnold B, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J Immunol. 2005;61:1–9. Available from: Google Scholar
  65. 65.
    Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60. Available from: CrossRefPubMedGoogle Scholar
  66. 66.
    Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209:551–63. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Park JS, Svetkauskaite D, He Q, Kim J-Y, Strassheim D, Ishizaka A, et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7. Available from: CrossRefPubMedGoogle Scholar
  68. 68.
    Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol. 2005;175:7661–8. Available from: CrossRefPubMedGoogle Scholar
  69. 69.
    Urbonaviciute V, Fürnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205:3007–18. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tian J, Avalos AM, Mao S-Y, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96. Available from: CrossRefPubMedGoogle Scholar
  71. 71.
    Ivanov S, Dragoi A-M, Wang X, Dallacosta C, Louten J, Musco G, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110:1970–81. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Youn JH, Oh YJ, Kim ES, Choi JE, Shin J-S. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol. 2008;180:5067–74. Available from: CrossRefPubMedGoogle Scholar
  73. 73.
    Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462:99–103. Available from: CrossRefPubMedGoogle Scholar
  74. 74.
    Antoine DJ, Harris HE, Andersson U, Tracey KJ, Bianchi ME. A systematic nomenclature for the redox states of high mobility group box (HMGB) proteins. Mol Med. 2014;20:135–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yang H, Wang H, Ju Z, Ragab AA, Lundbäck P, Long W, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. J Exp Med. 2015;212:5–14. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Agalave NM, Larsson M, Abdelmoaty S, Su J, Baharpoor A, Lundbäck P, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain. 2014;155:1802–13. Available from: CrossRefPubMedGoogle Scholar
  77. 77.
    Štros M. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta Gene Regul Mech. 2010;1799:101–13. Available from: CrossRefGoogle Scholar
  78. 78.
    Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res. 2006;312:3526–38. Available from: CrossRefPubMedGoogle Scholar
  79. 79.
    Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–48. Available from: CrossRefPubMedGoogle Scholar
  80. 80.
    Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30:531–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77. Available from: CrossRefPubMedGoogle Scholar
  82. 82.
    Ritossa F. A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia. 1962;18:571–3.CrossRefGoogle Scholar
  83. 83.
    Tissières A, Mitchell HK, Tracy UM. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol. 1974;84:389–98. Available from: CrossRefPubMedGoogle Scholar
  84. 84.
    Michaud S, Marin R, Tanguay RM. Regulation of heat shock gene induction and expression during Drosophila development. Cell Mol Life Sci. 1997;53:104–13. Available from: CrossRefPubMedGoogle Scholar
  85. 85.
    Javid B, MacAry PA, Lehner PJ. Structure and function: heat shock proteins and adaptive immunity. J Immunol. 2007;179:2035–40. Available from: CrossRefPubMedGoogle Scholar
  86. 86.
    Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med. 1999;5:1249–55. Available from: CrossRefPubMedGoogle Scholar
  87. 87.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12:1539–46. Available from: CrossRefPubMedGoogle Scholar
  88. 88.
    El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, Nicolls MR. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett. 2007;111:36–44. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Mambula SS, Calderwood SK. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia. 2006;22:575–85. Available from: CrossRefPubMedGoogle Scholar
  90. 90.
    Calderwood SK, Gong J, Murshid A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol. 2016;7:159. Available from: PubMedPubMedCentralGoogle Scholar
  91. 91.
    Asea A. Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr Immunol Rev. 2006;2:209–15. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ohashi K, Burkart V, Flohé S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–61. Available from: CrossRefPubMedGoogle Scholar
  93. 93.
    Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001;276:31332–9. Available from: CrossRefPubMedGoogle Scholar
  94. 94.
    Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277:15028–34. Available from: CrossRefPubMedGoogle Scholar
  95. 95.
    Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity. 2002;17:353–62. Available from: CrossRefPubMedGoogle Scholar
  96. 96.
    Delneste Y. Scavenger receptors and heat-shock protein-mediated antigen cross-presentation. Biochem Soc Trans. 2004;32:633–5. Available from: CrossRefPubMedGoogle Scholar
  97. 97.
    Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada Y, Kodama T, et al. HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun. 2002;290:858–64. Available from: CrossRefPubMedGoogle Scholar
  98. 98.
    Becker T, Hartl F-U, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol. 2002;158:1277–85. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A. 2004;101:6128–33. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Stebbing J, Savage P, Patterson S, Gazzard B. All for CD91 and CD91 for all. J Antimicrob Chemother. 2003;53:1–3. Available from: CrossRefPubMedGoogle Scholar
  101. 101.
    Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett. 2005;579:1951–60. Available from: CrossRefPubMedGoogle Scholar
  102. 102.
    Calderwood SK, Mambula SS, Gray PJ, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett. 2007;581:3689–94. Available from: CrossRefPubMedGoogle Scholar
  103. 103.
    Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR, et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J. 2003;22:6127–36. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16:833–8. Available from: CrossRefPubMedGoogle Scholar
  105. 105.
    Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol. 2000;59:55–63. Available from: CrossRefPubMedGoogle Scholar
  106. 106.
    Salari S, Seibert T, Chen Y-X, Hu T, Shi C, Zhao X, et al. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones. 2013;18:53–63. Available from: CrossRefPubMedGoogle Scholar
  107. 107.
    Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 – a master regulator in protein degradation. FEBS Lett. 2017;591:2648–60. Available from: CrossRefPubMedGoogle Scholar
  108. 108.
    Calderwood SK, Murshid A, Gong J. Heat shock proteins: conditional mediators of inflammation in tumor immunity. Front Immunol. 2012;3:75. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    van Eden W, Spiering R, Broere F, van der Zee R. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones. 2012;17:281–92. Available from: CrossRefPubMedGoogle Scholar
  110. 110.
    Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol. 2016;3:317–23. Available from: CrossRefGoogle Scholar
  111. 111.
    Sedaghat F, Notopoulos A. S100 protein family and its application in clinical practice. Hippokratia. 2008;12:198–204. Available from: PubMedPubMedCentralGoogle Scholar
  112. 112.
    Timmermans K, Kox M, Scheffer GJ, Pickkers P. Danger in the intesive care unit: DAMPs in critically ill patients. Shock. 2016;45:108–16. Available from: CrossRefPubMedGoogle Scholar
  113. 113.
    Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37. Available from: CrossRefPubMedGoogle Scholar
  114. 114.
    Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem. 2007;101:1463–70. Available from: CrossRefPubMedGoogle Scholar
  115. 115.
    Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120:644–59. Available from: CrossRefPubMedGoogle Scholar
  116. 116.
    Oesterle A, Hofmann Bowman MA. S100A12 and the S100/CalgranulinsSignificance. Arterioscler Thromb Vasc Biol. 2015;35:2496–507. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Jackson E, Little S, Franklin DS, Gaddy JA, Damo SM. Expression, purification, and antimicrobial activity of S100A12. J Vis Exp. 2017.; Available from:
  118. 118.
    Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793:1008–22. Available from: CrossRefPubMedGoogle Scholar
  119. 119.
    Ma L, Sun P, Zhang J-C, Zhang Q, Yao S-L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med. 2017;40:31–8. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Chen B, Miller AL, Rebelatto M, Brewah Y, Rowe DC, Clarke L, et al. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns (DAMP) receptors in vitro and in vivo. PLoS One. 2015;10:e0115828. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    He Z, Riva M, Björk P, Swärd K, Mörgelin M, Leanderson T, et al. CD14 is a co-receptor for TLR4 in the S100A9-induced pro-inflammatory response in monocytes. PLoS One. 2016;11:e0156377. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Foell D, Wittkowski H, Kessel C, Lüken A, Weinhage T, Varga G, et al. Proinflammatory S100A12 can activate human monocytes via toll-like receptor 4. Am J Respir Crit Care Med. 2013;187:1324–34. Available from: CrossRefPubMedGoogle Scholar
  123. 123.
    Bagheri V. S100A12: friend or foe in pulmonary tuberculosis? Cytokine. 2017;92:80–2. Available from: CrossRefPubMedGoogle Scholar
  124. 124.
    Jensen JL, Indurthi VSK, Neau DB, Vetter SW, Colbert CL. Structural insights into the binding of the human receptor for advanced glycation end products (RAGE) by S100B, as revealed by an S100B–RAGE-derived peptide complex. Acta Crystallogr Sect D Biol Crystallogr. 2015;71:1176–83. Available from: CrossRefGoogle Scholar
  125. 125.
    Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gross SR, Sin CGT, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci. 2014;71:1551–79. Available from: CrossRefPubMedGoogle Scholar
  127. 127.
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Nakahira K, Hisata S, Choi AMK. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23:1329–50. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Pazmandi K, Agod Z, Kumar BV, Szabo A, Fekete T, Sogor V, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281–90. Available from: CrossRefPubMedGoogle Scholar
  130. 130.
    Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44:739–54. Available from: CrossRefPubMedGoogle Scholar
  131. 131.
    Ablasser A, Hertrich C, Waßermann R, Hornung V. Nucleic acid driven sterile inflammation. Clin Immunol. 2013;147:207–15. Available from: CrossRefPubMedGoogle Scholar
  132. 132.
    Miyake K, Shibata T, Ohto U, Shimizu T. Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. J Leukoc Biol. 2017;101:135–42. Available from: CrossRefPubMedGoogle Scholar
  133. 133.
    Hartmann G. Nucleic acid immunity. Adv Immunol. 2017;133:121–69. Available from: CrossRefPubMedGoogle Scholar
  134. 134.
    Zhang Z, Ohto U, Shimizu T. Toward a structural understanding of nucleic acid-sensing Toll-like receptors in the innate immune system. FEBS Lett. 2017;591(20):3167–81. Available from: CrossRefPubMedGoogle Scholar
  135. 135.
    Land WG. Innate alloimmunity Part 1. Innate immunity and host defense. Baskent University, Ankara; Pabst Science Publishers, Lengerich; 2011. Available from: ISBN 978-3-389967-737-9Google Scholar
  136. 136.
    Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet (London). 1963;2:113–6. Available from: CrossRefGoogle Scholar
  137. 137.
    Itagaki K, Kaczmarek E, Lee YT, Tang IT, Isal B, Adibnia Y, et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS One. 2015;e0120549:10. Available from: Google Scholar
  138. 138.
    Magna M, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016;38:1029–41. Available from: CrossRefPubMedGoogle Scholar
  139. 139.
    Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011;54:999–1008. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–31. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Allam R, Kumar SVR, Darisipudi MN, Anders H-J. Extracellular histones in tissue injury and inflammation. J Mol Med (Berl). 2014;92:465–72. Available from: CrossRefGoogle Scholar
  142. 142.
    Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 2016;7:e2518. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Santos TG, Martins V, Hajj G. Unconventional secretion of heat shock proteins in cancer. Int J Mol Sci. 2017;18:946. Available from: CrossRefPubMedCentralGoogle Scholar
  144. 144.
    Silk E, Zhao H, Weng H, Ma D. The role of extracellular histone in organ injury. Cell Death Dis. 2017;8:e2812. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hagele H, Lichtnekert J, et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol. 2012;23:1375–88. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Decker P, Singh-Jasuja H, Haager S, Kötter I, Rammensee H-G. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J Immunol. 2005;174:3326–34. Available from: CrossRefPubMedGoogle Scholar
  147. 147.
    Linkermann A, Stockwell BR, Krautwald S, Anders H-J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14:759–67. Available from: CrossRefPubMedGoogle Scholar
  148. 148.
    Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol. 2016;186:829–43. Available from: CrossRefPubMedGoogle Scholar
  150. 150.
    Roussel L, Erard M, Cayrol C, Girard J-P. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep. 2008;9:1006–12. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Moussion C, Ortega N, Girard J-P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”? PLoS One. 2008;3:e3331. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Cayrol C, Girard J-P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 2009;106:9021–6. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009;31:84–98. Available from: CrossRefPubMedGoogle Scholar
  154. 154.
    Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 2016;283:2599–615. Available from: CrossRefPubMedGoogle Scholar
  156. 156.
    Cayrol C, Girard J-P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–7. Available from: CrossRefPubMedGoogle Scholar
  157. 157.
    Bertheloot D, Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol. 2017;14:43–64. Available from: CrossRefPubMedGoogle Scholar
  158. 158.
    Lefrançais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard J-P, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A. 2012;109:1673–8. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Kim B, Lee Y, Kim E, Kwak A, Ryoo S, Bae SH, et al. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol. 2013;4:391. Available from: PubMedPubMedCentralGoogle Scholar
  160. 160.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50. Available from: CrossRefPubMedGoogle Scholar
  161. 161.
    Eigenbrod T, Park J-H, Harder J, Iwakura Y, Núñez G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol. 2008;181:8194–8. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Liu Y, Kimura K, Orita T, Sonoda K-H. Necrosis-induced sterile inflammation mediated by interleukin-1α in retinal pigment epithelial cells. PLoS One. 2015;e0144460:10. Available from: Google Scholar
  163. 163.
    Fukuda K, Ishida W, Miura Y, Kishimoto T, Fukushima A. Cytokine expression and barrier disruption in human corneal epithelial cells induced by alarmin released from necrotic cells. Jpn J Ophthalmol. 2017;61:415–22. Available from: CrossRefPubMedGoogle Scholar
  164. 164.
    Mosley B, Urdal DL, Prickett KS, Larsen A, Cosman D, Conlon PJ, et al. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem. 1987;262:2941–4. Available from: PubMedGoogle Scholar
  165. 165.
    Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med. 1982;155:264–75. Available from: CrossRefPubMedGoogle Scholar
  166. 166.
    Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol. 2002;23:541–8. Available from: CrossRefPubMedGoogle Scholar
  167. 167.
    Wenceslau CF, McCarthy CG, Szasz T, Goulopoulou S, Webb RC. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am J Physiol Heart Circ Physiol. 2015;308:H768–77. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Wenceslau CF, McCarthy CG, Szasz T, Spitler K, Goulopoulou S, Webb RC, et al. Mitochondrial damage-associated molecular patterns and vascular function. Eur Heart J. 2014;35:1172–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Marutani T, Hattori T, Tsutsumi K, Koike Y, Harada A, Noguchi K, et al. Mitochondrial protein-derived cryptides: are endogenous N-formylated peptides including mitocryptide-2 components of mitochondrial damage-associated molecular patterns? Biopolymers. 2016;106:580–7. Available from: CrossRefPubMedGoogle Scholar
  170. 170.
    Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K, Rossi AG. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol. 2015;185:1172–84. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Eleftheriadis T, Pissas G, Liakopoulos V, Stefanidis I. Cytochrome c as a potentially clinical useful marker of mitochondrial and cellular damage. Front Immunol. 2016;7:279. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Wenceslau CF, Szasz T, McCarthy CG, Baban B, NeSmith E, Webb RC. Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation. Pulm Pharmacol Ther. 2016;37:49–56. Available from: CrossRefPubMedGoogle Scholar
  173. 173.
    He H-Q, Ye R. The formyl peptide receptors: diversity of ligands and mechanism for recognition. Molecules. 2017;22:455. Available from: CrossRefGoogle Scholar
  174. 174.
    Pullerits R, Bokarewa M, Jonsson I-M, Verdrengh M, Tarkowski A. Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology (Oxford). 2005;44:32–9. Available from: CrossRefGoogle Scholar
  175. 175.
    Gouveia A, Bajwa E, Klegeris A. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochim Biophys Acta Gen Subj. 2017;1861:2274–81. Available from: CrossRefPubMedGoogle Scholar
  176. 176.
    Ahrens S, Zelenay S, Sancho D, Hanč P, Kjær S, Feest C, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36:635–45. Available from: CrossRefPubMedGoogle Scholar
  177. 177.
    Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, et al. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. Ltd: Elife eLife Sciences Publications; 2016. p. 5. Available from: Google Scholar
  178. 178.
    Reis E, Sousa C. Sensing infection and tissue damage. EMBO Mol Med. 2017;9:285–8. Available from: CrossRefGoogle Scholar
  179. 179.
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martínez D, Hernanz-Falcón P, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458:899–903. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Figueiredo RT, Fernandez PL, Mourao-Sa DS, Porto BN, Dutra FF, Alves LS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem. 2007;282:20221–9. Available from: CrossRefPubMedGoogle Scholar
  181. 181.
    Mendonça R, Silveira AAA, Conran N. Red cell DAMPs and inflammation. Inflamm Res. 2016;65:665–78. Available from: CrossRefPubMedGoogle Scholar
  182. 182.
    Land WG. Transfusion-related acute lung injury: the work of DAMPs. Transfus Med Hemother. 2013;40:3–13. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100:879–87. Available from: CrossRefPubMedGoogle Scholar
  184. 184.
    Porto BN, Alves LS, Fernández PL, Dutra TP, Figueiredo RT, Graça-Souza AV, et al. Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J Biol Chem. 2007;282:24430–6. Available from: CrossRefPubMedGoogle Scholar
  185. 185.
    Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci. 2014;111:E4110–8. Available from: CrossRefPubMedGoogle Scholar
  187. 187.
    Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–90. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Frimat M, Tabarin F, Dimitrov JD, Poitou C, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood. 2013;122:282–92. Available from: CrossRefPubMedGoogle Scholar
  189. 189.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32. Available from: CrossRefPubMedGoogle Scholar
  190. 190.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. Available from: CrossRefPubMedGoogle Scholar
  191. 191.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–56. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265:35–52. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Man SM, Kanneganti T-D. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–59. Available from: CrossRefPubMedGoogle Scholar
  195. 195.
    Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243:206–14. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Gordon JL. Extracellular ATP: effects, sources and fate. Biochem J. 1986;233:309–19. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Khakh BS, Burnstock G. The double life of ATP. Sci Am. 2009;301:84–90, 92. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A. 2009;106:20388–93. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N. Engl. J. N Engl J Med. 2012;367:2322–33. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509:310–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, et al. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis. 2015;e1954:6. Available from: Google Scholar
  202. 202.
    Di Virgilio F, Vuerich M. Purinergic signaling in the immune system. Auton Neurosci. 2015;191:117–23. Available from: CrossRefPubMedGoogle Scholar
  203. 203.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Rock KL, Kataoka H, Lai J-J. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9:13–23. Available from: CrossRefPubMedGoogle Scholar
  205. 205.
    Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425:516–21. Available from: CrossRefPubMedGoogle Scholar
  206. 206.
    Kono H, Chen C-J, Ontiveros F, Rock KL. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest. 2010;120:1939–49. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22:28–33. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Yang M, Hearnden CHA, Oleszycka E, Lavelle EC. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants. Methods Mol Biol. 2013;1040:41–63. Available from: CrossRefPubMedGoogle Scholar
  209. 209.
    Bainton DF, Takemura R, Stenberg PE, Werb Z. Rapid fragmentation and reorganization of Golgi membranes during frustrated phagocytosis of immobile immune complexes by macrophages. Am J Pathol. 1989;134:15–26. Available from: PubMedPubMedCentralGoogle Scholar
  210. 210.
    Ea H-K, So A, Liote F, Busso N. Basic calcium phosphate crystals induce NLRP3 inflammasome activation: the in vitro and in vivo face to face. Proc Natl Acad Sci. 2011;108:E1361. Available from: CrossRefPubMedGoogle Scholar
  211. 211.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (80). 2008;320:674–7. Available from: CrossRefGoogle Scholar
  212. 212.
    Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69:915–30. Available from: CrossRefPubMedGoogle Scholar
  213. 213.
    Pizzini A, Lunger L, Demetz E, Hilbe R, Weiss G, Ebenbichler C, et al. The role of omega-3 fatty acids in reverse cholesterol transport: a review. Nutrients. 2017;9:1099. Available from: CrossRefPubMedCentralGoogle Scholar
  214. 214.
    Tangirala RK, Jerome WG, Jones NL, Small DM, Johnson WJ, Glick JM, et al. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994;35:93–104. Available from: PubMedGoogle Scholar
  215. 215.
    Lim RS, Suhalim JL, Miyazaki-Anzai S, Miyazaki M, Levi M, Potma EO, et al. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J Lipid Res. 2011;52:2177–86. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015;116:307–11. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15:104–16. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Rajamäki K, Lappalainen J, Oörni K, Välimäki E, Matikainen S, Kovanen PT, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One. 2010;e11765:5. Available from: Google Scholar
  221. 221.
    Christ A, Bekkering S, Latz E, Riksen NP. Long-term activation of the innate immune system in atherosclerosis. Semin Immunol. 2016;28:384–93. Available from: CrossRefPubMedGoogle Scholar
  222. 222.
    Ketelhuth DF, Hansson GK. Modulation of autoimmunity and atherosclerosis – common targets and promising translational approaches against disease. Circ J. 2015;79:924–33. Available from: CrossRefPubMedGoogle Scholar
  223. 223.
    Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation. 2009;120:1640–5. Available from: CrossRefPubMedGoogle Scholar
  224. 224.
    Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162. Available from: PubMedPubMedCentralGoogle Scholar
  225. 225.
    De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32:373–9. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Vandanmagsar B, Youm Y-H, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT-H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–15. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Weber K, Schilling JD. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem. 2014;289:9158–71. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Szpigel A, Hainault I, Carlier A, Venteclef N, Batto A-F, Hajduch E, et al. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 2018;61(2):399–412. Available from: CrossRefPubMedGoogle Scholar
  230. 230.
    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol. 2008;9:857–65. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Takada LT. Innate immunity and inflammation in Alzheimer’s disease pathogenesis. Arq Neuropsiquiatr. 2017;75:607–8. Available from: CrossRefPubMedGoogle Scholar
  233. 233.
    Heneka MT. Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol. 2017;27:220–2. Available from: CrossRefPubMedGoogle Scholar
  234. 234.
    Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, et al. Triggering of inflammasome by aggregated α–synuclein, an inflammatory response in synucleinopathies. PLoS One. 2013;e55375:8. Available from: Google Scholar
  235. 235.
    Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert J-M, Raussens V. Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem J. 2015;471:323–33. Available from: CrossRefPubMedGoogle Scholar
  236. 236.
    Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE. Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia. 2014;57:1884–8. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Westwell-Roper C, Denroche HC, Ehses JA, Verchere CB. Differential activation of innate immune pathways by distinct islet amyloid polypeptide (IAPP) aggregates. J Biol Chem. 2016;291:8908–17. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Lee H-M, Kim J-J, Kim HJ, Shong M, Ku BJ, Jo E-K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 2013;62:194–204. Available from: CrossRefPubMedGoogle Scholar
  240. 240.
    Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014;192:1997–2006. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. Cell. 2015;4:178–201. Available from: CrossRefGoogle Scholar
  242. 242.
    Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88:887–918. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Cappelletti M, Presicce P, Calcaterra F, Mavilio D, Della Bella S. Bright expression of CD91 identifies highly activated human dendritic cells that can be expanded by defensins. Immunology. 2015;144:661–7. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013;34:13–21. Available from: CrossRefPubMedGoogle Scholar
  245. 245.
    Gold L, Williams D, Groenendyk J, Michalak M, Eggleton P. Unfolding the complexities of ER chaperones in health and disease: report on the 11th international calreticulin workshop. Cell Stress Chaperones. 2015;20:875–83. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J. 1999;344(Pt 2):281–92. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Gao B, Adhikari R, Howarth M, Nakamura K, Gold MC, Hill AB, et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity. 2002;16:99–109. Available from: CrossRefPubMedGoogle Scholar
  248. 248.
    Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund A-C, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28:578–90. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123:321–34. Available from: CrossRefPubMedGoogle Scholar
  250. 250.
    Martins I, Kepp O, Galluzzi L, Senovilla L, Schlemmer F, Adjemian S, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann N Y Acad Sci. 2010;1209:77–82. Available from: CrossRefPubMedGoogle Scholar
  251. 251.
    Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16:907–17. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24:311–8. Available from: CrossRefPubMedGoogle Scholar
  253. 253.
    Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun. 2011;2:521. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Osman R, Tacnet-Delorme P, Kleman J-P, Millet A, Frachet P. Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells. Front Immunol. 2017;8:1034. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Liu R, Gong J, Chen J, Li Q, Song C, Zhang J, et al. Calreticulin as a potential diagnostic biomarker for lung cancer. Cancer Immunol Immunother. 2012;61:855–64. Available from: CrossRefPubMedGoogle Scholar
  256. 256.
    Duo C-C, Gong F-Y, He X-Y, Li Y-M, Wang J, Zhang J-P, et al. Soluble calreticulin induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFκB signaling pathways. Int J Mol Sci. 2014;15:2916–28. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood. 2001;97:3505–12. Available from: CrossRefPubMedGoogle Scholar
  258. 258.
    Adkins I, Sadilkova L, Hradilova N, Tomala J, Kovar M, Spisek R. Severe, but not mild heat-shock treatment induces immunogenic cell death in cancer cells. Oncoimmunology. 2017;6:e1311433. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Zhang Y, Zheng L. Tumor immunotherapy based on tumor-derived heat shock proteins (Review). Oncol Lett. 2013;6:1543–9. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Xu Y, Wang Y, Zhao B, Zhang X, Fan H, Li X, et al. Activation of anti-HBV immune activity by DNA vaccine via electroporation using heat shock proteins as adjuvant. Sheng Wu Gong Cheng Xue Bao. 2013;29:1765–75. Available from: PubMedGoogle Scholar
  261. 261.
    Wang X-P, Wang Q-X, Lin H-P, Xu B, Zhao Q, Chen K. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity. Oncotarget. 2015;7:71274–84. Available from: Google Scholar
  262. 262.
    Carapito R.. Personal communication.Google Scholar
  263. 263.
    Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol Rev. 2015;267:88–116. Available from: CrossRefPubMedGoogle Scholar
  264. 264.
    Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3:575–82. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, et al. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol. 2014;164:253–64. Available from: CrossRefPubMedGoogle Scholar
  266. 266.
    Bahram S, Bresnahan M, Geraghty DE, Spies T. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A. 1994;91:6259–63. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Bahram S, Mizuki N, Inoko H, Spies T. Nucleotide sequence of the human MHC class I MICA gene. Immunogenetics. 1996;44:80–1. Available from: CrossRefPubMedGoogle Scholar
  268. 268.
    Radosavljevic M, Cuillerier B, Wilson MJ, Clément O, Wicker S, Gilfillan S, et al. A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3. Genomics. 2002;79:114–23. Available from: CrossRefPubMedGoogle Scholar
  269. 269.
    Iannello A, Raulet DH. Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb Symp Quant Biol. 2013;78:249–57. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Carapito R, Jung N, Kwemou M, Untrau M, Michel S, Pichot A, et al. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood. 2016;128:1979–86. Available from: CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Tonnus W, Linkermann A. “Death is my Heir”—ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury. Cell Chem Biol. 2016;23:202–3. Available from: CrossRefPubMedGoogle Scholar
  273. 273.
    Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis. Immunol Rev. 2017;277:128–49. Available from: CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations