Advertisement

Granitoids and Greenstone Belts of the Pietersburg Block—Witnesses of an Archaean Accretionary Orogen Along the Northern Edge of the Kaapvaal Craton

  • Oscar LaurentEmail author
  • Armin Zeh
  • Günther Brandl
  • Adrien Vezinet
  • Allan Wilson
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

The Pietersburg Block (PB), the northernmost terrane of the Kaapvaal Craton, can be subdivided into four Archaean grey gneiss units: Makhutswi-Murchison South (MMS), Groot Letaba-Duivelskloof (GDL), Goudplaats-Hout River (GHR) and Southern Marginal Zone (SMZ). These domains are limited by greenstone belts (Pietersburg, Murchison, Rhenosterkoppies and Giyani) and major shear zones. These lithologies were intruded by a mafic-layered intrusion (the Rooiwater Complex) and voluminous syn- to post-tectonic granitoids forming either small bodies in grey gneisses or voluminous plutons/batholiths. The grey gneisses are made up of Mesoarchaean (3.12–2.85 Ga) and seldom Palaeoarchaean (3.46–3.17 Ga) TTGs formed by melting of metabasaltic rocks at >45 km depth. The greenstone belts consist of Palaeoarchaean (3.46–3.20 Ga) mafic metabasalts, metakomatiites (and intrusive counterparts) and rare Mesoarchaean (2.95–2.84 Ga) felsic volcanics, intercalated with BIF, chert and siliciclastic rocks deposited at 3.05–2.92 Ga in the Murchison belt; 2.88–2.80 Ga in the Pietersburg and Giyani belts; and 2.76–2.71 Ga in the Rhenosterkoppies belt and SMZ. All lithologies were affected by greenschist—to upper amphibolite-facies metamorphism, mainly during Mesoarchaean N–S-directed compression. The 2.97–2.96 Ga Rooiwater Complex and coeval felsic volcanics of the Murchison belt formed through fractionation of mantle-derived magma. Granitoids of the PB include Bt-(Ms-) granites formed at 2.84–2.75 Ga by melting of TTGs (± sediments), and Hbl-Bt-(Cpx-)sanukitoids and Bt-Ep-granitoids at 2.70–2.67 Ga by melting of enriched lithospheric mantle and interactions with the crust during magma ascent. After formation of a Palaeoarchaean (3.46–3.18 Ga) micro-terrane(s) in an island arc and/or oceanic plateau setting, the geodynamic evolution of the PB features a Meso- to Neoarchaean (3.15–2.65 Ga) accretionary orogen formed during protracted southward subduction. The Mesoarchaean evolution began at 3.15–2.97 Ga with the formation of an arc/back-arc system along the northern margin of the proto-Kaapvaal Craton. Subsequently, it was controlled by the docking of the Palaeoarchaean micro-terrane at 2.97–2.84 Ga, causing intense crustal reworking in an Andean-type continental margin setting (2.84–2.73 Ga) and by Neoarchaean (2.73–2.65 Ga) continent-continent collision with a crustal block located farther North, possibly the precursor (>2.7 Ga) rocks of the Central Zone of the Limpopo Belt.

Keywords

Pietersburg block Granitoids Greenstone belts Geochemistry Zircon U–Pb–Hf isotopes Archaean accretionary orogen 

Notes

Acknowledgements

We thank the editors for inviting us to contribute to the present book and for their patience regarding ever-delayed submission. Reviews by Jan Kramers, Dirk van Reenen and Andre Smit were appreciated and contributed to improve the original manuscript. We also gratefully thank the colleagues who contributed to the ideas presented here, either through stimulating discussion or/and their valuable contributions to understand the complex geology of the PB: S. Block, A. Chauvet, S. Couzinié, R. Doucelance, L.-S. Doucet, C. Dusséaux, A. Gerdes, J. Jaguin, N. Madlakana, H. Martin, J.-F. Moyen, G. Nicoli, J.-L. Paquette, M. Poujol, M. Rapopo, G. Stevens, J. Taylor and many others.

Supplementary material

419257_1_En_4_MOESM1_ESM.xlsx (164 kb)
Supplementary material 1
419257_1_En_4_MOESM2_ESM.xlsx (99 kb)
Supplementary material 2

References

  1. Anhaeusser CR (1992) Structures in granitoid gneisses and associated migmatites close to the granulite boundary of the Limpopo Belt, South Africa. Precambr Res 55:81–92CrossRefGoogle Scholar
  2. Anhaeusser CR (2002) Archaean granitoid rocks of the Makoppa Dome, Limpopo Province, South Africa: preliminary petrological and geochemical results. Extended Abstract, 11th Quadrennial IAGOD Symposium and Geocongress 2002, Windhoek, Namibia. CD-ROM Geological Survey of NamibiaGoogle Scholar
  3. Anhaeusser CR (2006) A reevaluation of Archean intracratonic terrane boundaries on the Kaapvaal Craton, South Africa: collisional suture zones? In: Reimold WU, Gibbson R (eds) Processes of the early earth. Geological Society of America Special Publication, vol. 405, pp 315–332CrossRefGoogle Scholar
  4. Anhaeusser CR, Poujol M (2004) Petrological, geochemical and U–Pb isotopic studies of Archaean granitoid rocks of the Makoppa Dome, northwest Limpopo Province, South Africa. S Afr J Geol 107:521–544CrossRefGoogle Scholar
  5. Barton JM Jr, Doig R, Smith CB, Bohlender F, Van Reenen DD (1992) Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo Belt, southern Africa. Precambr Res 55:451–467CrossRefGoogle Scholar
  6. Barton JM Jr, Holzer L, Kamber B, Doig R, Kramers JD, Nyfeler D (1994) Discrete metamorphic events in the Limpopo belt, southern Africa: implications for the application of P-T paths in complex metamorphic terranes. Geology 22:1035–1038CrossRefGoogle Scholar
  7. Barton JM Jr, Klemd R, Zeh A (2006) The Limpopo belt: a result of Archean to Proterozoic, Turkic-type orogenesis? Geol Soc Am Spec Pap 405:315–332Google Scholar
  8. Bédard JH (2018) Stagnant lids and mantle overturns: implications for Archaean tectonics, magma genesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci Front 9:19–49CrossRefGoogle Scholar
  9. Belyanin GA, Kramers JD, Vorster C, Knoper MW (2014) The timing of successive fluid events in the Southern Marginal Zone ofthe Limpopo Complex, South Africa: constraints from 40Ar–39Ar geochronology. Precambr Res 254:169–193CrossRefGoogle Scholar
  10. Belyanin GA, Rajesh HM, Sajeev K, Van Reenen DD (2012) Ultrahigh-temperature metamorphism from an unusual corundum+orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa. Contrib Miner Petrol 164:457–475CrossRefGoogle Scholar
  11. Block S, Moyen J-F, Zeh A, Poujol M, Jaguin J, Paquette J-L (2013) The Murchison Greenstone Belt, South Africa: accreted slivers with contrasting metamorphic conditions. Precambr Res 227:77–98CrossRefGoogle Scholar
  12. Bohlender F, van Reenen DD, Barton JM Jr (1992) Evidence for metamorphic and igneous charnockites in the Southern Marginal Zone of the Limpopo Belt. Precambrian Res. 55:429–449CrossRefGoogle Scholar
  13. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57CrossRefGoogle Scholar
  14. Brandl G, Cloete M, Anhaeusser CR (2006) Archean greenstone belts. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, pp 9–56Google Scholar
  15. Brandl G, Jaeckel P, Kröner A (1996) Single zircon age for the felsic Rubbervale Formation, Murchison greenstone belt, South Africa. S Afr J Geol 99:229–234Google Scholar
  16. Brandl G, Kröner A (1993) Preliminary results of single zircon studies from various Archaean rocks of the northeastern Transvaal. Extended Abstract, 16th International Colloquium of African Geology. Mbabane, Swaziland, pp 54–56Google Scholar
  17. Brandl G, de Wit MJ (1997) The Kaapvaal Craton. In: De Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford University Press, Oxford, pp 581–607Google Scholar
  18. Brandt S, Klemd R, Li Q, Kröner A, Brand G, Fisher A, Bobek P, Zhou T (2018) Pressure-temperature evolution during two granulite-facies metamorphic events (2.62 and 2.02 Ga) in rocks from the Central Zone of the Limpopo Belt, South Africa. Precambr Res 310:471–506CrossRefGoogle Scholar
  19. Byron CL, Barton JM Jr (1990) The setting of mineralization in a portion of the Eersteling goldfield, Pietersburg granite–greenstone terrane, South Africa. S Afr J Geol 93:463–472Google Scholar
  20. Condie KC (1981) Archaean greenstone belts. In: Windley BF (ed) Developments in precambrian geology, vol 3. 434 pGoogle Scholar
  21. de Beer JH, Stettler EH (1992) The deep structure of the Limpopo Belt from geophysical studies. Precambr Res 55:173–186CrossRefGoogle Scholar
  22. de Beer JH, Stettler EH, Duvenhage AWA, Joubert SJ, de W Raath CJ (1984) Gravity and geoelectrical studies of the Murchison greenstone belt, South Africa. S Afr J Geol 91:184–197Google Scholar
  23. de Wit MJ, Armstrong RA, Kamo SL, Erlank AJ (1993) Gold-bearing sediments in the Pietersburg greenstone belt: age equivalents of the Witwatersrand Supergroup sediments, South Africa. Econ Geol 88:1242–1252CrossRefGoogle Scholar
  24. de Wit MJ, Jones MG, Buchanan DL (1992a) The geology and tectonic evolution of the Pietersburg Greenstone Belt, South Africa. Precambr Res 55:123–153CrossRefGoogle Scholar
  25. de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde REJ, Green RW, Tredoux M et al (1992b) Formation of an Archaean continent. Nature 357:553–562CrossRefGoogle Scholar
  26. de Wit MJ, van Reenen DD, Roering C (1992c) Geologic observations across a tectono-metamorphic boundary in the Babangu area, Giyani (Sutherland) Greenstone Belt, South Africa. Precambr Res 55:111–122CrossRefGoogle Scholar
  27. Doucet LS, Laurent O, Mattielli N, Debouge W (2017) Zn isotope heterogeneity in the continental lithosphere: new evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chem Geol 476:260–271CrossRefGoogle Scholar
  28. Eglington BM, Armstrong RA (2004) The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. S Afr J Geol 107:13–32CrossRefGoogle Scholar
  29. Eriksson PG, Banerjee S, Nelson DR, Rigby MJ, Catuneanu O, Sarkar S, Roberts RJ et al (2009) A Kaapvaal craton debate: nucleus of an early small supercontinent or affected by an enhanced accretion event? Gondwana Res 15:354–372CrossRefGoogle Scholar
  30. Franey NJ (1987) A geological model of the shear zone gold deposits in the Pietersburg greenstone belt, South Africa. Unpublished M.Sc. thesis, Rhodes University, Grahamstown, 114 pGoogle Scholar
  31. Frimmel HE, Zeh A, Lehrmann B, Hallbauer D, Frank W (2009) Geochemical and geochronological constraints on the nature of the immediate basement next to the Mesoarchaean auriferous Witwatersrand Basin, South Africa. J Petrol 50:2187–2220CrossRefGoogle Scholar
  32. Gerya T, Perchuk LL, van Reenen DD, Smit CA (2000) Two-dimensional numerical modeling of pressure–temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. J Geodyn 30:17–35CrossRefGoogle Scholar
  33. Good N, de Wit MJ (1997) The Thabazimbi-Murchison lineament of the Kaapvaal Craton, South Africa: 2700 Ma of episodic deformation. J Geol Soc London 154:93–97CrossRefGoogle Scholar
  34. Graupner T, Klemd R, Henjes-Kunst F, Goldmann S, Behnsen H, Gerdes A, Dohrmann R, Barton JM, Opperman R (2018) Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints. Miner Deposita, in press.  https://doi.org/10.1007/s00126-018-0791-7CrossRefGoogle Scholar
  35. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269CrossRefGoogle Scholar
  36. Grobler NJ (1972) The geology of the Pietersburg belt. Unpublished Ph.D. thesis, University Orange Free State, Bloemfontein, 156 pGoogle Scholar
  37. Guitreau M, Blichert-Toft J, Martin H, Mojzsis S, Albarède F (2012) Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet Sci Lett 337–338:211–223CrossRefGoogle Scholar
  38. Henderson DR, Long LE, Barton JM Jr (2000) Isotopic ages and chemical and isotopic composition of the Archaean Turfloop Batholith, Pietersburg granite greenstone terrane, Kaapvaal Craton, South Africa. S Afr J Geol 103:38–46CrossRefGoogle Scholar
  39. Henzen M, Steidle L (2000) The Giyani Greenstone Belt, Northern Province, South Africa. Unpublished Diploma thesis, Bern University, Switzerland; 73 pGoogle Scholar
  40. Jaeckel P, Kröner A, Kamo SL, Brandl G, Wendt JI (1997) Late Archaean to early Proterozoic granitoid magmatism and high-grade metamorphism in the central Limpopo Belt, South Africa. J Geol Soc London 154:25–44CrossRefGoogle Scholar
  41. Jaguin J (2012) Datation et caractérisation de processus minéralisateurs à l’Archéen : Application à l’Antimony Line, Ceinture de Roches Vertes de Murchison, Afrique du Sud. Unpublished doctoral thesis, University of Rennes, France, 351 pGoogle Scholar
  42. Jaguin J, Gapais D, Poujol M, Boulvais P, Moyen J-F (2012) The Murchison greenstone belt (South Africa): a general tectonic framework. South Afr J Geol 115:65–76CrossRefGoogle Scholar
  43. Johnson T, Brown M, Kaus BJP, van Tongeren JA (2013) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci 7:47–52CrossRefGoogle Scholar
  44. Jones MG (1989) The geology and associated mineralization of part of the Pietersburg greenstone belt, South Africa. Unpublished Ph.D. thesis, Imperial College, London, UK, 336 ppGoogle Scholar
  45. Kalbskopf SP, Barton JM (2003) The Zandrivier Deposit, Pietersburg Greenstone Belt, South Africa: an auriferous tourmalinite. S Af J Geol 106:361–374CrossRefGoogle Scholar
  46. Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Miner Petrol 144:38–56CrossRefGoogle Scholar
  47. Kleywegt RJ, De Beer JH, Stettler EH, Brandl G, Duvenhage AWA, Day RW (1987) The structure of the Giyani greenstone belt, as derived from geophysical studies. S Afr J Geol 90:282–295Google Scholar
  48. Kramers JD, Mouri H (2011) The geochronology of the Limpopo Complex: a controversy solved. In: van Reenen DD, Kramers JD, McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high-grade gneiss terranes, with special emphasis on the Limpopo Complex of Southern Africa. Geological Society of America, Memoir, vol. 207, pp 85–106Google Scholar
  49. Kramers JD, Henzen M, Steidle L (2014) Greenstone belts at the northernmost edge of the Kaapvaal Craton: timing of tectonic events and a possible crustal fluid source. Precambrian Res. 253:96–113CrossRefGoogle Scholar
  50. Kramers JD, McCourt S, Roering C, Smit CA, van Reenen DD (2011) Tectonic models proposed for the Limpopo Complex: mutual compatibilities and constraints. In: van Reenen DD, Kramers J., McCourt S, Perchuk LL (eds) Origin and evolution of Precambrian high grade gneiss terranes, with special emphasis on the Limpopo Complex of Southern Africa. Geological Society of America Memoir, vol 207, pp 311–324Google Scholar
  51. Kramers JD, McCourt S, van Reenen DD (2006) The Limpopo Belt. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The Geology of South Africa. Geological Society of South Africa, Johannesburg, South Africa, pp 209–236Google Scholar
  52. Kreissig K, Holzer L, Frei IM, Villa JD, Kramers JD, Kröner A, Smit CA, van Reenen DD (2001) Geochronology of the Hout River shear zone and the metamorphism in the Southern marginal zone of the Limpopo belt, Southern Africa. Precambr Res 109:145–173CrossRefGoogle Scholar
  53. Kreissig K, Nagler TF, Kramers JD, Van Reenen DD, Smit CA (2000) An isotopic and geochemical study of the Kaapvaal Craton and the Southern Marginal Zone of the Limpopo belt: are they juxtaposed terranes? Lithos 50:1–25CrossRefGoogle Scholar
  54. Kröner A, Brandl G, Brandt S, Klemd R, Xie H (2018) Geochronological evidence for Archaean and Palaeoproterozoic polymetamorphism in the Central Zone of the Limpopo Belt, South Africa. Precambr Res 310:320–347CrossRefGoogle Scholar
  55. Kröner A, Jaeckel P, Brandl G (2000) Single zircon ages for felsic to intermediate rocks from the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses, northern Kaapvaal Craton, South Africa. J Afr Earth Sci 30:773–793CrossRefGoogle Scholar
  56. Kröner A, Jaeckel P, Brandl G, Nemchin AA, Pidgeon RT (1999) Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance. Precambr Res 93:299–337CrossRefGoogle Scholar
  57. Laurent O (2012) Les changements géodynamiques à la transition Archéen-Protérozoïque: étude des granitoïdes de la marge Nord du craton du Kaapvaal (Afrique du Sud). Unpublished doctoral thesis, University Blaise Pascal, Clermont-Ferrand II, France, 512 pGoogle Scholar
  58. Laurent O, Zeh A (2015) A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: example from the Pietersburg block (South Africa). Earth Planet Sci Lett 430:326–338CrossRefGoogle Scholar
  59. Laurent O, Martin H, Moyen J-F, Doucelance R (2014a) The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235CrossRefGoogle Scholar
  60. Laurent O, Nicoli G, Zeh A, Stevens G, Moyen J-F, Vezinet A (2014b) Comment on “Ultrahigh temperature granulites and magnesian charnockites: evidence for the Neoarchean accretion along the northern margin of the Kaapvaal craton”. Precambr Res 255:455–458CrossRefGoogle Scholar
  61. Laurent O, Rapopo M, Stevens G, Moyen J-F, Martin H, Doucelance R, Bosq C (2014c) Contrasting petrogenesis of Mg–K and Fe–K granitoids and implications for post-collisional magmatism: case study from the late-Archean Matok pluton (Pietersburg block, South Africa). Lithos 196:131–149CrossRefGoogle Scholar
  62. Laurent O, Doucelance R, Martin H, Moyen J-F (2012) Differentiation of the late-Archaean sanukitoid series and some implications for crusta l growth: insightsfrom geochemical modelling on the Bulai pluton, Central Limpopo Belt, SouthAfrica. Precambr Res 227:188–203Google Scholar
  63. Laurent O, Paquette J-L, Martin H, Doucelance R, Moyen J-F (2013) LA-ICP-MS dating of zircons from Meso- and Neoarchean granitoids of the Pietersburg block (South Africa): crustal evolution at the northern margin of the Kaapvaal craton. Precambr Res 230:209–226CrossRefGoogle Scholar
  64. Laurent O, Zeh A, Gerdes A, Villaros A, Gros K, Słaby E (2017) How do granitoid magmas mix with each other? Insights from textures, trace element and Sr–Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa) Contrib Mineral Petrol 172(9):80Google Scholar
  65. Mapeo RBM, Armstrong RA, Kampunzu AB, Ramokate LV (2004) SHRIMP U–Pb zircon ages of granitoids from the Western Domain of the Kaapvaal Craton, southeastern Botswana: implications for crustal evolution. S Afr J Geol 107:55–68Google Scholar
  66. Martin H, Moyen J-F, Guitreau M, Blichert-Toft J, Le Pennec J-L (2014) Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198–199:1–13Google Scholar
  67. Mason R (1973) The Limpopo mobile belt—Southern Africa. Philos Trans Royal Soc London Ser A 273:463–485CrossRefGoogle Scholar
  68. McCourt S, van Reenen DD (1992) Structural geology and tectonic setting of the Sutherland greenstone belt, Kaapvaal Craton, South Africa. Precambr Res 55:93–110CrossRefGoogle Scholar
  69. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  70. Moyen J-F (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36CrossRefGoogle Scholar
  71. Moyen J-F, Laurent O (2018) Archaean tectonic systems: a view from igneous rocks. Lithos 302–303:99–125CrossRefGoogle Scholar
  72. Moyen J-F, Martin H (2012) Forty years of TTG research. Lithos 148:312–336CrossRefGoogle Scholar
  73. Moyen J-F, Stevens, G (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. American Geophysical Union, Monographs vol 164, pp 149–178Google Scholar
  74. Næraa T, Scherstén A, Rosing MT, Kemp AIS, Hoffmann JE, Kokfelt TF, Whitehouse MJ (2012) Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485:627–630CrossRefGoogle Scholar
  75. Nagel TJ, Hoffmann JE, Münker C (2012) Generation of Eoarchean tonalite–trondhjemite–granodiorite series from thickened mafic arc crust. Geology 40:375–378CrossRefGoogle Scholar
  76. Nicoli G, Stevens G, Buick IS, Moyen J-F (2014) A comment on ultrahigh-temperature metamorphism from an unusual corundum + orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex. South Africa. Contrib Mineral Petrol 167:1022CrossRefGoogle Scholar
  77. Nicoli G, Stevens G, Moyen J-F, Frei D (2015) Rapid evolution from sediment to anatectic granulite in an Archean continental collision zone: the example of the Bandelierkop Formation metapelites, South Marginal Zone, Limpopo Belt, South Africa. J Metamorph Geol 33:177–202CrossRefGoogle Scholar
  78. Passeraub M (1998) The Rhenosterkoppies Greenstone Belt, Northern Transvaal, South Africa. Unpublished diploma thesis, University of Bern, Switzerland, 96 pGoogle Scholar
  79. Passeraub M, Wüst T, Kreissig K, Smit CA, Kramers JD (1999) Structure, metamorphism and geochronology of the Rhenosterkoppies greenstone belt, Northern Province, South Africa. S Afr J Geol 102:323–334Google Scholar
  80. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  81. Perchuk LL, Gerya TV, van Reenen D, Smit CA, Krotov AV (2000) P-T paths and tectonic evolution of shear zones separating high-grade terrains from cratons: examples from Kola Peninsula (Russia) and Limpopo Region (South Africa). Miner Petrol 69:109–142CrossRefGoogle Scholar
  82. Poujol M (2001) U–Pb isotopic evidence for episodic granitoid emplacement in the Murchison greenstone belt, South Africa. J Afr Earth Sc 33:155–163CrossRefGoogle Scholar
  83. Poujol M, Robb LJ (1999) New U–Pb zircon ages on gneisses and pegmatite from south of the Murchison greenstone belt, South Africa. S Afr J Geol 102:93–97Google Scholar
  84. Poujol M, Robb LJ, Anhaeusser CR, Gericke B (2003) A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambr Res 127:181–213CrossRefGoogle Scholar
  85. Poujol M, Robb LJ, Respaut J-P, Anhaeusser CR (1996) 3.07–2.97 Ga greenstone belt formation in the northeastern Kaapvaal Craton: implications for the origin of the Witwatersrand Basin. Econ Geol 91:1455–1461CrossRefGoogle Scholar
  86. Pretorius AI, van Reenen DD, Barton JM (1988) BIF-hosted gold mineralization at the Fumani Mine, Sutherland greenstone belt, South Africa. S Afr J Geol 91:429–438Google Scholar
  87. Rajesh HM, Santosh M, Wan Y, Liu D, Liu SJ, Belyanin GA (2014) Ultrahigh temperature granulites and magnesian charnockites: evidence for Neoarchean accretion along the northern margin of the Kaapvaal Craton. Precambr Res. 246:150–159CrossRefGoogle Scholar
  88. Rapopo M (2010) Petrogenesis of the Matok pluton, South Africa: implications on the heat source that induced regional metamorphism in the Southern Marginal Zone of the Limpopo belt. Unpublished M.Sc. thesis, University of Stellenbosch, South AfricaGoogle Scholar
  89. Robb LJ, Brandl G, Anhaeusser CR, Poujol M (2006) Archean granitoid intrusions. In: Johnson, MR, Anhaeusser, Thomas RJ (eds) The Geology of South Africa. Geological Society of South Africa: Johannesburg/Council of Geosciences, Pretoria, pp 57–94Google Scholar
  90. Roering C, van Reenen DD, Smit CA, Barton JM, de Beer JH, de Wit MJ, Stettler EH, van Schalkwyk JF, Stevens G, Pretorius S (1992) Tectonic model for the evolution of the Limpopo Belt. Precambr Res 55:539–552CrossRefGoogle Scholar
  91. SACS, South African Committee for Stratigraphy, 1980. Stratigraphy of South Africa. Part1, Kent, LE (comp). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook Geol Surv S Afr, vol 8, 690 pGoogle Scholar
  92. Saager R, Muff R (1980) A new discovery of possible primitive life-forms in conglomerate of the Archaean Pietersburg greenstone belt, South Africa. Geol Rundsch 69:179–185CrossRefGoogle Scholar
  93. Schwarz-Schampera U, Terblanche H, Oberthür T (2010) Volcanic-hosted massive sulfide deposits in the Murchison greenstone belt, South Africa. Miner Deposita 45:113–145CrossRefGoogle Scholar
  94. Schoene B, Dudas FOL, Bowring SA, de Wit M (2008) Sm–Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal craton. Terra Nova 21:219–228CrossRefGoogle Scholar
  95. Smit CA, Roering C, Van Reenen DD (1992) The structural framework of the southern margin of the Limpopo Belt, South Africa. Precambr Res 55:51–67CrossRefGoogle Scholar
  96. Smit CA, van Reenen DD, Gerya TV, Perchuk LL (2001) P–T conditions of decompression of the Limpopo high-grade terrain: record from shear zones. J Metam Geol 19:249–268CrossRefGoogle Scholar
  97. Smit CA, van Reenen DD, Roering C (2014) Role of fluids in the exhumation of the Southern Marginal Zone of the Limpopo Complex, South Africa. Precambr Res 253:81–95CrossRefGoogle Scholar
  98. Stevens G (1997) Melting, carbonic fluids and water recycling in the deep crust: an example from the Limpopo Belt, South Africa. J Metamorph Geol 15:141–154CrossRefGoogle Scholar
  99. Stevens G, van Reenen DD (1992a) Constraints on the form of the P-T loop in the Southern Marginal Zone of the Limpopo Belt. South Africa. Precambrian Res. 55:279–296CrossRefGoogle Scholar
  100. Stevens G, van Reenen DD (1992b) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambr Res 55:303–319CrossRefGoogle Scholar
  101. Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite–facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Miner Petrol 128:352–370CrossRefGoogle Scholar
  102. Taylor J, Nicoli G, Stevens G, Frei D, Moyen J-F (2014) The processes that control leucosome compositions in metasedimentary granulites: perspectives from the Southern Marginal Zone migmatites, Limpopo Belt, South Africa. J Metam Geol 32:713–742CrossRefGoogle Scholar
  103. Taylor RS (1981) Volcanogenic copper-zinc sulphide deposits of the Murchinson greenstone belt, northeastern Transvaal, South Africa. Unpublished Ph.D. thesis, Durham University, UK, 361 pGoogle Scholar
  104. Tsunogae T, van Reenen DD (2014) High- to ultrahigh-temperature metasomatism related to brine infiltration in the Neoarchean Limpopo Complex: petrology and phase equilibrium modeling. Precambr Res 253:157–170CrossRefGoogle Scholar
  105. Tsunogae T, Miyano T, van Reenen DD, Smit CA (2004) Ultrahigh-temperature metamorphism of the Southern Marginal Zone of the Archean Limpopo Belt, South Africa. J Mineral Petrol Sci 99:213–224CrossRefGoogle Scholar
  106. van Reenen DD (1986) Hydration of cordierite and hypersthene and a description of the retrograde orthoamphibole isograd in the Limpopo Belt, South Africa. Am Mineral 71:900–915Google Scholar
  107. van Reenen DD, Barton JM Jr, Roering C, Smit CA, van Schalkwyk JF (1987) Deep crustal response to continental collision: the Limpopo Belt of South Africa. Geology 15:11–14CrossRefGoogle Scholar
  108. van Reenen DD, Roering C, Ashwal LD, de Wit MJ (1992) Regional geological setting of the Limpopo Belt. Precambrian Res. 55:1–5CrossRefGoogle Scholar
  109. van Reenen DD, Pretorius AI, Roering C (1994) Characterization of fluids associated with gold mineralization and with regional high-temperature retrogression of granulites in the Limpopo belt, South Africa. Geochim Cosmochim Acta 58(3): 1147–1159Google Scholar
  110. van Reenen DD, Smit CA, Perchuk AL, Huizenga JM, Safonov OG, Gerya TV (2019) The Neoarchaean Limpopo Orogeny: Exhumation and Regional-Scale Gravitational Crustal Overturn Driven by a Granulite Diapir. In: Kröner A, Hofmann A (eds) The Archaean Geology of the Kaapvaal Craton, Southern Africa. Regional geology reviews. Springer International Publishing AGGoogle Scholar
  111. Vearncombe JR (1991) A possible Archaean island arc in the Murchison Belt, Kaap-vaal Craton, South Africa. J Afr Earth Sc 13:299–304CrossRefGoogle Scholar
  112. Vearncombe JR, Barton JM, Walsh KL (1987) The Rooiwater Complex and associated rocks, Murchison granitoid–greenstone terrane, Kaapvaal Craton. S Afr J Geol 90:361–377Google Scholar
  113. Vearncombe JR, Barton JM, Cheshire PE. De Beer JH, Stettler EH, Brandl G (1992) Geology, geophysics and mineralisation of the Murchison schist belt, Rooiwater Complex and surrounding granitoids. Geological Survey of South Africa Memoirs, vol 81, 139 pGoogle Scholar
  114. Vermeesch P (2012) On the visualization of detrital age distributions. Chem Geol 312–313:190–194CrossRefGoogle Scholar
  115. Vezinet A (2016) Différenciation et stabilization de la croûte continentale archéenne, l’exemple de la marge Nord du craton du Kaapvaal, Afrique du Sud. Doctoral thesis, University of Saint-Etienne, France, 321 pGoogle Scholar
  116. Vezinet A, Moyen J-F, Stevens G, Nicoli G, Laurent O, Couzinié S, Frei D (2018) A record of 0.5 Ga of evolution of the continental crust along the northern edge of the Kaapvaal Craton, South Africa: consequences for the understanding of Archean geodynamic processes. Precambr Res 305:310–326CrossRefGoogle Scholar
  117. Vorster CJ (1979) Die geologie van die Klein-Letabagebied, noordoos-Transvaal met spesiale verwysing na die granitiese gesteentes. Unpublished M.Sc. thesis, Rand Afrikaans University of Johannesburg, 138 pGoogle Scholar
  118. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  119. Wilson AH, Zeh A (2018) U–Pb and Hf isotopes of detrital zircons from the Pongola Supergroup: constraints on deposition ages, provenance and Archaean evolution of the Kaapvaal Craton. Precambr Res 305:117–196CrossRefGoogle Scholar
  120. Zeh A, Gerdes A (2012) U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone belt (South Africa)—is there a common provenance with the Witwatersrand Basin? Precambr Res 204–205:46–56CrossRefGoogle Scholar
  121. Zeh A, Gerdes A, Barton JM Jr (2009) Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown Arc. J Petrol 50:933–966CrossRefGoogle Scholar
  122. Zeh A, Gerdes A, Klemd R, Barton JM Jr (2007) Archean to Proterozoic crustal evolution in the Central Zone of the Limpopo Belt (South Africa/Botswana): constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. J Petrol 48:1605–1639CrossRefGoogle Scholar
  123. Zeh A, Gerdes A, Millonig L (2011) Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust–mantle for-mation and crust reworking between 3.66 and 2.73 Ga. J Geol Soc Lond 168:953–963CrossRefGoogle Scholar
  124. Zeh A, Jaguin J, Poujol M, Boulvais P, Block S, Paquette J-L (2013) Juvenile crust formation in the northeastern Kaapvaal Craton at 2.97 Ga—Implications for Archean terrane accretion, and the source of the Pietersburg gold. Precambr Res 233:20–43CrossRefGoogle Scholar
  125. Zeh A, Stern RA, Gerdes A (2014) The oldest zircons of Africa—their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution. Precambr Res 241:203–230CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oscar Laurent
    • 1
    Email author
  • Armin Zeh
    • 2
  • Günther Brandl
    • 3
  • Adrien Vezinet
    • 4
  • Allan Wilson
    • 5
  1. 1.ETH Zürich, Institute for Geochemistry and PetrologyZürichSwitzerland
  2. 2.Mineralogie und PetrologieKarlsruher Institut für Technologie, Campus Süd, Institut für Angewandte GeowissenschaftenKarlsruheGermany
  3. 3.Council for GeoscienceLimpopo UnitPolokwaneSouth Africa
  4. 4.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmonton, AlbertaCanada
  5. 5.School of Geosciences, University of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations