Advertisement

The Future of Radiotherapy in Bladder Cancer

  • Nuradh Joseph
  • Rohan Iype
  • Ananya Choudhury
Chapter

Abstract

  1. 1.

    What are the current challenges in improving outcome of muscle-invasive bladder cancer (MIBC) patients treated with radical radiotherapy

     
  2. 2.

    Which predictive biomarkers hold the potential to guide selection of patients suitable for bladder preservation?

     
  3. 3.

    Are there clinically useful biomarkers to guide radiosensitizer selection?

     
  4. 4.

    What promise does the combination of immunotherapy and radiotherapy hold in MIBC?

     
  5. 5.

    How would the advances in technical radiotherapy improve tumour control while reducing toxicity of treatment?

     

References

  1. 1.
    Mirza A, Choudhury A. Bladder preservation for muscle invasive bladder cancer. Bl Cancer. 2016;2:151–63.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kotwal S, Choudhury A, Johnston C, et al. Similar treatment outcomes for radical cystectomy and radical radiotherapy in invasive bladder cancer treated at a United Kingdom specialist treatment center. Int J Radiat Oncol Biol Phys. 2008;70(2):456–63.CrossRefPubMedGoogle Scholar
  3. 3.
    James ND, Hussain SA, Hall E, et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N Engl J Med. 2012;366:1477–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Hoskin PJ, Rojas AM, Bentzen SM, et al. Radiotherapy with concurrent Carbogen and nicotinamide in bladder carcinoma. J Clin Oncol. 2010;28:4912–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Choudhury A, Swindell R, Logue JP, et al. Phase II study of conformal hypofractionated radiotherapy with concurrent gemcitabine in muscle-invasive bladder cancer. J Clin Oncol. 2011;29:733–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Coppin CM, Gospodarowicz MK, James K, et al. Improved local control of invasive bladder cancer by concurrent cisplatin and preoperative or definitive radiation. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1996;14:2901–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Lalondrelle S, Huddart R. Improving radiotherapy for bladder cancer: an opportunity to integrate new technologies. Clin Oncol (R Coll Radiol). 2009;21:380–4.CrossRefGoogle Scholar
  8. 8.
    Lalondrelle S, Huddart R, Warren-Oseni K, et al. Adaptive-predictive organ localization using cone-beam computed tomography for improved accuracy in external beam radiotherapy for bladder cancer. Int J Radiat Oncol Biol Phys. 2011;79:705–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Foroudi F, Pham D, Rolfo A, et al. The outcome of a multi-centre feasibility study of online adaptive radiotherapy for muscle-invasive bladder cancer TROG 10.01 BOLART. Radiother Oncol. 2014;111:316–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Huddart RA, Hall E, Hussain SA, et al. Randomized noninferiority trial of reduced high-dose volume versus standard volume radiation therapy for muscle-invasive bladder cancer: results of the BC2001 trial (CRUK/01/004). Int J Radiat Oncol Biol Phys. 2013;87:261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cowan R, McBain C, Ryder W, et al. Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-escalated partial bladder radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59:197–207.CrossRefPubMedGoogle Scholar
  12. 12.
    Wright JL, Lin DW, Porter MP. The association between extent of lymphadenectomy and survival among patients with lymph node metastases undergoing radical cystectomy. Cancer. 2008;112:2401–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Tunio MA, Hashmi A, Qayyum A, et al. Whole-pelvis or bladder-only chemoradiation for lymph node-negative invasive bladder cancer: single-institution experience. Int J Radiat Oncol Biol Phys. 2012;82:457–62.CrossRefGoogle Scholar
  14. 14.
    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene. 2007;26:7749–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Choudhury A, Nelson LD, Teo MTW, Chilka S, Bhattarai S, Johnston CF, et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle invasive bladder cancer. Cancer Res. 2010;70(18):7017–26.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Laurberg JR, Brems-Eskildsen AS, Nordentoft I, et al. Expression of TIP60 (tat-interactive protein) and MRE11 (meiotic recombination 11 homolog) predict treatment-specific outcome of localised invasive bladder cancer. BJU Int. 2012;110:E1228–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996 Oct;41(1):31–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Quintiliani M. The oxygen effect in radiation inactivation of DNA and enzymes. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;50(4):573–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Eustace A, Irlam JJ, Taylor J, et al. Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother Oncol. 2013;108:40–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hunter BA, Eustace A, Irlam JJ, et al. Expression of hypoxia-inducible factor-1alpha predicts benefit from hypoxia modification in invasive bladder cancer. Br J Cancer. 2014;111:437–43.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang L, Williamson A, Irlam J, et al. A hypoxia transcriptomic signature predicting benefit from hypoxia-modifying treatment for high risk bladder cancer patients. In: NCRI cancer conference. Liverpool; 2016. http://abstracts.ncri.org.uk/abstract/a-hypoxia-transcriptomic-signature-predicting-benefit-from-hypoxia-modifying-treatment-for-high-risk-bladder-cancer-patients/
  23. 23.
    Mehta S, Illidge T, Choudhury A. Immunotherapy with radiotherapy in urological malignancies. Curr Opin Urol. 2016;26:514–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu CT, Chen WC, Chang YH, et al. The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci Rep. 2016;6:19740.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bellmunt J, Mullane SA, Werner L, et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol. 2015;26:812–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Joseph N, Dovedi SJ, Thompson C, et al. Pre-treatment lymphocytopaenia is an adverse prognostic biomarker in muscle-invasive and advanced bladder cancer. Ann Oncol. 2016;27:294–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Hafeez S, Koh M, Sohaib A, Huddart R. The role of functional MRI to characterise tumour boost delineation in patients undergoing radical radiotherapy for muscle invasive bladder cancer (MIBC). In: NCRI cancer conference. Liverpool; 2012. http://abstracts.ncri.org.uk/abstract/the-role-of-functional-mri-to-characterise-tumour-boost-delineation-in-patients-undergoing-radical-radiotherapy-for-muscle-invasive-bladder-cancer-mibc-2/
  30. 30.
    Mangar S, Thompson A, Miles E, et al. A feasibility study of using gold seeds as fiducial markers for bladder localization during radical radiotherapy. Br J Radiol. 2007;80:279–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Chai X, van Herk M, van de Kamer JB, et al. Behavior of lipiodol markers during image guided radiotherapy of bladder cancer. Int J Radiat Oncol Biol Phys. 2010;77:309–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Hafeez S, Warren-Oseni K, McNair HA, et al. Prospective study delivering simultaneous integrated high-dose tumor boost (≤70 Gy) with image guided adaptive radiation therapy for radical treatment of localized muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys. 2016;94:1022–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Hafeez S, Huddart R. Advances in bladder cancer imaging. BMC Med. 2013;11:104.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lagendijk JJ, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-linac system. Semin Radiat Oncol. 2014;24(3):207–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Vestergaard A, Hafeez S, Muren LP, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol. 2016;118:154–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ministry of HealthColomboSri Lanka
  2. 2.Department of Clinical OncologyThe Christie NHS Foundation TrustManchesterUK
  3. 3.Division of Cancer Science, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK

Personalised recommendations