Resistance of Gram-negative Bacilli to Antimicrobials

  • Charles R. DeanEmail author
  • Gianfranco De Pascale
  • Bret Benton
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


Bacterial pathogens exist in extremely large numbers, and their growth rates are generally rapid. This results in relentless evolution toward drug resistance under the selective pressure applied by the use of antibiotics in medicine and agriculture. Antimicrobial resistance has severely impacted the effectiveness of our current armamentarium of antibiotics, and the evolution of resistance will continue for any new agents that are introduced into clinical use. An understanding of drug resistance is important to prolong the effectiveness of currently used antibiotics and to inform the development of new agents. This chapter discusses antibiotic resistance in Gram-negative pathogens, beginning with the intrinsic resistance engendered by their unique outer membrane combined with active efflux and extending to the broad range of mechanisms including upregulation of efflux, alterations of cell envelope, mutation of antibacterial target genes, antibiotic-modifying enzymes, and target-protection mechanisms that are found in this diverse group of organisms. Resistance is often multifactorial, and the cumulative effect of multiple mechanisms is highlighted. Examples of these themes are provided for a range of important antibiotic classes, and efforts to address current resistance mechanisms are examined.


  1. 1.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.PubMedGoogle Scholar
  2. 2.
    Turnidge J, Paterson DL. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev. 2007;20(3):391–408.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol. 2003;185(19):5657–64.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Yu EW, McDermott G, Zgurskaya HI, Nikaido H, Koshland DE Jr. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science. 2003;300(5621):976–80.PubMedGoogle Scholar
  6. 6.
    Tal N, Schuldiner S. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc Natl Acad Sci U S A. 2009;106(22):9051–6.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev. 2005;57(10):1486–513.PubMedGoogle Scholar
  8. 8.
    Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44(D1):D646–53.PubMedGoogle Scholar
  9. 9.
    Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene-Agyei T, et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature. 2014;509(7501):512–5.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tamura N, Murakami S, Oyama Y, Ishiguro M, Yamaguchi A. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking. Biochemistry. 2005;44(33):11115–21.PubMedGoogle Scholar
  11. 11.
    Kim JS, Jeong H, Song S, Kim HY, Lee K, Hyun J, et al. Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol Cells. 2015;38(2):180–6.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Daury L, Orange F, Taveau JC, Verchere A, Monlezun L, Gounou C, et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun. 2016;7:10731.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature. 2006;443(7108):173–9.PubMedGoogle Scholar
  14. 14.
    Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006;313(5791):1295–8.PubMedGoogle Scholar
  15. 15.
    Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grutter MG. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 2007;5(1):e7.PubMedGoogle Scholar
  16. 16.
    Ruggerone P, Vargiu AV, Collu F, Fischer N, Kandt C. Molecular dynamics computer simulations of multidrug RND efflux pumps. Comput Struct Biotechnol J. 2013;5:e201302008.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Schulz R, Vargiu AV, Collu F, Kleinekathofer U, Ruggerone P. Functional rotation of the transporter AcrB: insights into drug extrusion from simulations. PLoS Comput Biol. 2010;6(6):e1000806.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to β-lactam resistance. Antimicrob Agents Chemother. 1994;38(8):1742–52.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Nikaido H, Basina M, Nguyen V, Rosenberg EY. Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those β-lactam antibiotics containing lipophilic side chains. J Bacteriol. 1998;180(17):4686–92.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Li XZ, Zhang L, Srikumar R, Poole K. Β-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1998;42(2):399–403.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S. β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem. 2014;289(15):10680–90.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol. 2002;184(23):6490–8.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Eda S, Maseda H, Nakae T. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J Biol Chem. 2003;278(4):2085–8.PubMedGoogle Scholar
  24. 24.
    Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol. 2000;182(11):3142–50.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700.PubMedGoogle Scholar
  26. 26.
    Walsh AG, Matewish MJ, Burrows LL, Monteiro MA, Perry MB, Lam JS. Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol Microbiol. 2000;35(4):718–27.PubMedGoogle Scholar
  27. 27.
    Pages JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6(12):893–903.PubMedGoogle Scholar
  28. 28.
    Nikaido H. Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem. 1994;269(6):3905–8.PubMedGoogle Scholar
  29. 29.
    Sugawara E, Nagano K, Nikaido H. Alternative folding pathways of the major porin OprF of Pseudomonas aeruginosa. FEBS J. 2012;279(6):910–8.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hancock RE, Woodruff WA. Roles of porin and β-lactamase in β-lactam resistance of Pseudomonas aeruginosa. Rev Infect Dis. 1988;10(4):770–5.PubMedGoogle Scholar
  31. 31.
    Isabella VM, Campbell AJ, Manchester J, Sylvester M, Nayar AS, Ferguson KE, et al. Toward the rational design of carbapenem uptake in Pseudomonas aeruginosa. Chem Biol. 2015;22(4):535–47.PubMedGoogle Scholar
  32. 32.
    Faraldo-Gomez JD, Sansom MS. Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol. 2003;4(2):105–16.PubMedGoogle Scholar
  33. 33.
    Kadner RJ. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol Microbiol. 1990;4(12):2027–33.PubMedGoogle Scholar
  34. 34.
    Nikaido H. The role of outer membrane and efflux pumps in the resistance of gram-negative bacteria. Can we improve drug access? Drug Resist Updat. 1998;1(2):93–8.PubMedGoogle Scholar
  35. 35.
    Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lim SP, Nikaido H. Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob Agents Chemother. 2010;54(5):1800–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mazzariol A, Cornaglia G, Nikaido H. Contributions of the AmpC β-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to β-lactams. Antimicrob Agents Chemother. 2000;44(5):1387–90.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Li XZ, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother. 2000;45(4):433–6.PubMedGoogle Scholar
  39. 39.
    Krishnamoorthy G, Wolloscheck D, Weeks JW, Croft C, Rybenkov VV, Zgurskaya HI. Breaking the permeability barrier of Escherichia coli by controlled hyperporination of the outer membrane. Antimicrob Agents Chemother. 2016;60(12):7372–81.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 2003;47(3):972–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Visalli MA, Murphy E, Projan SJ, Bradford PA. AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother. 2003;47(2):665–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ruzin A, Visalli MA, Keeney D, Bradford PA. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2005;49(3):1017–22.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Keeney D, Ruzin A, McAleese F, Murphy E, Bradford PA. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother. 2008;61(1):46–53.PubMedGoogle Scholar
  44. 44.
    Deng M, Zhu MH, Li JJ, Bi S, Sheng ZK, Hu FS, et al. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother. 2014;58(1):297–303.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li X, Zolli-Juran M, Cechetto JD, Daigle DM, Wright GD, Brown ED. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol. 2004;11(10):1423–30.PubMedGoogle Scholar
  46. 46.
    Brown DG, May-Dracka TL, Gagnon MM, Tommasi R. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem. 2014;57(23):10144–61.PubMedGoogle Scholar
  47. 47.
    Dean CR, Narayan S, Daigle DM, Dzink-Fox JL, Puyang X, Bracken KR, et al. Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother. 2005;49(8):3129–35.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Caughlan RE, Jones AK, Delucia AM, Woods AL, Xie L, Ma B, et al. Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the gram-negative pathogen Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(1):17–27.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jones AK, Woods AL, Takeoka KT, Shen X, Wei JR, Caughlan RE, et al. Determinants of antibacterial spectrum and resistance potential of the elongation factor G inhibitor argyrin B in key gram-negative pathogens. Antimicrob Agents Chemother. 2017;61(4):e02400–16.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Caughlan RE, Sriram S, Daigle DM, Woods AL, Buco J, Peterson RL, et al. Fmt bypass in Pseudomonas aeruginosa causes induction of MexXY efflux pump expression. Antimicrob Agents Chemother. 2009;53(12):5015–21.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Balibar CJ, Iwanowicz D, Dean CR. Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa. Curr Microbiol. 2013;67(3):293–9.PubMedGoogle Scholar
  52. 52.
    Morita Y, Gilmour C, Metcalf D, Poole K. Translational control of the antibiotic inducibility of the PA5471 gene required for mexXY multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol. 2009;191(15):4966–75.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Morita Y, Sobel ML, Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol. 2006;188(5):1847–55.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen W, Wang D, Zhou W, Sang H, Liu X, Ge Z, et al. Novobiocin binding to NalD induces the expression of the MexAB-OprM pump in Pseudomonas aeruginosa. Mol Microbiol. 2016;100(5):749–58.PubMedGoogle Scholar
  55. 55.
    Srikumar R, Paul CJ, Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 2000;182(5):1410–4.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Daigle DM, Cao L, Fraud S, Wilke MS, Pacey A, Klinoski R, et al. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol. 2007;189(15):5441–51.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Morita Y, Cao L, Gould VC, Avison MB, Poole K. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol. 2006;188(24):8649–54.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother. 2011;55(2):508–14.PubMedGoogle Scholar
  59. 59.
    Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol. 2005;187(4):1246–53.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Baranova N, Nikaido H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol. 2002;184(15):4168–76.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol. 2014;14:119.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Rosner JL, Martin RG. Reduction of cellular stress by TolC-dependent efflux pumps in Escherichia coli indicated by BaeSR and CpxARP activation of spy in efflux mutants. J Bacteriol. 2013;195(5):1042–50.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Tian ZX, Yi XX, Cho A, O”Gara F, Wang YP. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLoS Pathog. 2016;12(10):e1005932.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Adewoye L, Sutherland A, Srikumar R, Poole K. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol. 2002;184(15):4308–12.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(5):1782–6.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Cao L, Srikumar R, Poole K. MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol. 2004;53(5):1423–36.PubMedGoogle Scholar
  67. 67.
    Wang H, Dzink-Fox JL, Chen M, Levy SB. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother. 2001;45(5):1515–21.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Purssell A, Poole K. Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa. Microbiology. 2013;159(Pt 10):2058–73.PubMedGoogle Scholar
  69. 69.
    Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56(1):20–51.PubMedGoogle Scholar
  70. 70.
    Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42–51.PubMedGoogle Scholar
  71. 71.
    Poulou A, Voulgari E, Vrioni G, Koumaki V, Xidopoulos G, Chatzipantazi V, et al. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol. 2013;51(10):3176–82.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Wozniak A, Villagra NA, Undabarrena A, Gallardo N, Keller N, Moraga M, et al. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J Med Microbiol. 2012;61(Pt 9):1270–9.PubMedGoogle Scholar
  73. 73.
    Lavigne JP, Sotto A, Nicolas-Chanoine MH, Bouziges N, Pages JM, Davin-Regli A. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int J Antimicrob Agents. 2013;41(2):130–6.PubMedGoogle Scholar
  74. 74.
    Bajaj H, Scorciapino MA, Moynie L, Page MG, Naismith JH, Ceccarelli M, et al. Molecular basis of filtering carbapenems by porins from β-Lactam-resistant clinical strains of Escherichia coli. J Biol Chem. 2016;291(6):2837–47.PubMedGoogle Scholar
  75. 75.
    Muller C, Plesiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(3):1211–21.PubMedGoogle Scholar
  76. 76.
    Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother. 2001;45(1):105–16.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug e ffl ux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol. 2015;6:377.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Peters JU, Hert J, Bissantz C, Hillebrecht A, Gerebtzoff G, Bendels S, et al. Can we discover pharmacological promiscuity early in the drug discovery process? Drug Discov Today. 2012;17(7-8):325–35.PubMedGoogle Scholar
  79. 79.
    Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta. 2009;1788(1):289–94.PubMedGoogle Scholar
  80. 80.
    Yoshida K, Nakayama K, Ohtsuka M, Kuru N, Yokomizo Y, Sakamoto A, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg Med Chem. 2007;15(22):7087–97.PubMedGoogle Scholar
  81. 81.
    Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, et al. Structural basis for the inhibition of bacterial multidrug exporters. Nature. 2013;500(7460):102–6.PubMedGoogle Scholar
  82. 82.
    Zuo Z, Weng J, Wang W. Insights into the inhibitory mechanism of D13-9001 to the multidrug transporter AcrB through molecular dynamics simulations. J Phys Chem B. 2016;120(9):2145–54.PubMedGoogle Scholar
  83. 83.
    Nguyen ST, Kwasny SM, Ding X, Cardinale SC, McCarthy CT, Kim HS, et al. Structure-activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorg Med Chem. 2015;23(9):2024–34.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Opperman TJ, Kwasny SM, Kim HS, Nguyen ST, Houseweart C, D’Souza S, et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother. 2014;58(2):722–33.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding X, et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A. 2016;113(13):3509–14.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, et al. Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect Dis. 2017;3(1):89–98.PubMedGoogle Scholar
  87. 87.
    Chalhoub H, Pletzer D, Weingart H, Braun Y, Tunney MM, Elborn JS, et al. Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic. Sci Rep. 2017;7:40208.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Vuorio R, Vaara M. The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility. Antimicrob Agents Chemother. 1992;36(4):826–9.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Young K, Silver LL, Bramhill D, Cameron P, Eveland SS, Raetz CR, et al. The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J Biol Chem. 1995;270(51):30384–91.PubMedGoogle Scholar
  90. 90.
    Sampson BA, Misra R, Benson SA. Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics. 1989;122(3):491–501.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci U S A. 2010;107(12):5363–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A. 2006;103(31):11754–9.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Balibar CJ, Grabowicz M. Mutant alleles of lptD increase the permeability of Pseudomonas aeruginosa and define determinants of intrinsic resistance to antibiotics. Antimicrob Agents Chemother. 2016;60(2):845–54.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Shen X, Johnson AK, Jones AK, Barnes SW, Walker JR, Ranjitkar S, Woods AL, Six DA, Dean CR. Genetic characterization of the hypersusceptible Pseudomonas aeruginosa strain Z61: identification of a defect in LptE. Abstr C-105 Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DC; 2014.Google Scholar
  95. 95.
    Piizzi G, Parker DT, Peng Y, Dobler M, Patnaik A, Wattanasin S, et al. Design, synthesis, and properties of a potent inhibitor of Pseudomonas aeruginosa deacetylase LpxC. J Med Chem. 2017;60(12):5002–14.PubMedGoogle Scholar
  96. 96.
    Barb AW, Jiang L, Raetz CR, Zhou P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci U S A. 2007;104(47):18433–8.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Barb AW, McClerren AL, Snehelatha K, Reynolds CM, Zhou P, Raetz CR. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemist. 2007;46(12):3793–802.Google Scholar
  98. 98.
    Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, et al. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem. 2012;55(2):914–23.PubMedGoogle Scholar
  99. 99.
    Hale MR, Hill P, Lahiri S, Miller MD, Ross P, Alm R, et al. Exploring the UDP pocket of LpxC through amino acid analogs. Bioorg Med Chem Lett. 2013;23(8):2362–7.PubMedGoogle Scholar
  100. 100.
    Liang X, Lee CJ, Chen X, Chung HS, Zeng D, Raetz CR, et al. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg Med Chem. 2011;19(2):852–60.PubMedGoogle Scholar
  101. 101.
    Liang X, Lee CJ, Zhao J, Toone EJ, Zhou P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J Med Chem. 2013;56(17):6954–66.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Mansoor UF, Vitharana D, Reddy PA, Daubaras DL, McNicholas P, Orth P, et al. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett. 2011;21(4):1155–61.PubMedGoogle Scholar
  103. 103.
    McAllister LA, Montgomery JI, Abramite JA, Reilly U, Brown MF, Chen JM, et al. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett. 2012;22(22):6832–8.PubMedGoogle Scholar
  104. 104.
    Montgomery JI, Brown MF, Reilly U, Price LM, Abramite JA, Arcari J, et al. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem. 2012;55(4):1662–70.PubMedGoogle Scholar
  105. 105.
    Murphy-Benenato KE, Olivier N, Choy A, Ross PL, Miller MD, Thresher J, et al. Synthesis, structure, and SAR of tetrahydropyran-Based LpxC Inhibitors. ACS Med Chem Lett. 2014;5(11):1213–8.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Titecat M, Liang X, Lee CJ, Charlet A, Hocquet D, Lambert T, et al. High susceptibility of MDR and XDR Gram-negative pathogens to biphenyl-diacetylene-based difluoromethyl-allo-threonyl-hydroxamate LpxC inhibitors. J Antimicrob Chemother. 2016;71(10):2874–82.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Kasar R, Linsell MS, Aggen JB, Lu Q, Wang D, Church T, et al. Hydroxamic acid derivatives and their use in the treatment of bacterial infections. Google Patents. 2012.Google Scholar
  108. 108.
    Cigana C, Bernardini F, Facchini M, Alcala-Franco B, Riva C, De Fino I, et al. Efficacy of the novel antibiotic POL7001 in preclinical models of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother. 2016;60(8):4991–5000.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Kalinin DV, Holl R. Insights into the zinc-dependent deacetylase LpxC: biochemical properties and inhibitor design. Curr Top Med Chem. 2016;16(21):2379–430.PubMedGoogle Scholar
  110. 110.
    Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327(5968):1010–3.PubMedGoogle Scholar
  111. 111.
    Steeghs L, de Cock H, Evers E, Zomer B, Tommassen J, van der Ley P. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant. EMBO J. 2001;20(24):6937–45.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–7.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Garcia-Quintanilla M, Carretero-Ledesma M, Moreno-Martinez P, Martin-Pena R, Pachon J, McConnell MJ. Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii. Int J Antimicrob Agents. 2015;46(6):696–702.PubMedGoogle Scholar
  114. 114.
    Boll JM, Crofts AA, Peters K, Cattoir V, Vollmer W, Davies BW, et al. A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc Natl Acad Sci U S A. 2016;113(41):E6228–E37.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Bojkovic J, Richie DL, Six DA, Rath CM, Sawyer WS, Hu Q, et al. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol. 2016;198(4):731–41.PubMedCentralGoogle Scholar
  116. 116.
    Garcia-Quintanilla M, Caro-Vega JM, Pulido MR, Moreno-Martinez P, Pachon J, McConnell MJ. Inhibition of LpxC Increases antibiotic susceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(8):5076–9.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Lin L, Tan B, Pantapalangkoor P, Ho T, Baquir B, Tomaras A, et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. MBio. 2012;3(5):e00312.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Clements JM, Coignard F, Johnson I, Chandler S, Palan S, Waller A, et al. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother. 2002;46(6):1793–9.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kimura Y, Matsunaga H, Vaara M. Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents. J Antibiot (Tokyo). 1992;45(5):742–9.Google Scholar
  120. 120.
    Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992;56(3):395–411.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S, et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother. 2017;61(8):e00200–17.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Murray B, Pillar C, Pucci M, Shinabarger D. Mechanism of action of SPR741, a potentiator molecule for Gram-negative pathogens. Abstr Saturday-491. New Orleans: Microbe; 2017.Google Scholar
  123. 123.
    Urfer M, Bogdanovic J, Lo Monte F, Moehle K, Zerbe K, Omasits U, et al. A peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli. J Biol Chem. 2016;291(4):1921–32.PubMedGoogle Scholar
  124. 124.
    DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med. 2014;6(262):262ra155.PubMedGoogle Scholar
  125. 125.
    Thanabalasuriar A, Surewaard BG, Willson ME, Neupane AS, Stover CK, Warrener P, et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest. 2017;127(6):2249–61.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Tran QT, Williams S, Farid R, Erdemli G, Pearlstein R. The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using WaterMap. Proteins. 2013;81(2):291–9.PubMedGoogle Scholar
  127. 127.
    Tran QT, Pearlstein RA, Williams S, Reilly J, Krucker T, Erdemli G. Structure-kinetic relationship of carbapenem antibacterials permeating through E. coli OmpC porin. Proteins. 2014;82(11):2998–3012.PubMedGoogle Scholar
  128. 128.
    Bajaj H, Acosta Gutierrez S, Bodrenko I, Malloci G, Scorciapino MA, Winterhalter M, et al. Bacterial outer membrane porins as electrostatic nanosieves: exploring transport rules of small polar molecules. ACS Nano. 2017;11(6):4598–606.Google Scholar
  129. 129.
    Ghai I, Winterhalter M, Wagner R. Probing transport of charged β-lactamase inhibitors through OmpC, a membrane channel from E. coli. Biochem Biophys Res Commun. 2017;484(1):51–5.PubMedGoogle Scholar
  130. 130.
    Giammanco A, Cala C, Fasciana T, Dowzicky MJ. Global assessment of the activity of tigecycline against multidrug-resistant Gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial. mSphere. 2017;2(1):e00310.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Lomovskaya O, Watkins WJ. Efflux pumps: their role in antibacterial drug discovery. Curr Med Chem. 2001;8(14):1699–711.PubMedGoogle Scholar
  132. 132.
    O’Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem. 2008;51(10):2871–8.PubMedGoogle Scholar
  133. 133.
    Reck F, Ehmann DE, Dougherty TJ, Newman JV, Hopkins S, Stone G, et al. Optimization of physicochemical properties and safety profile of novel bacterial topoisomerase type II inhibitors (NBTIs) with activity against Pseudomonas aeruginosa. Bioorg Med Chem. 2014;22(19):5392–409.PubMedGoogle Scholar
  134. 134.
    Richter MF, Drown BS, Riley AP, Garcia A, Shirai T, Svec RL, et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature. 2017;545(7654):299–304.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Hong S, Moritz TJ, Rath CM, Tamrakar P, Lee P, Krucker T, et al. Assessing antibiotic permeability of Gram-negative bacteria via nanofluidics. ACS Nano. 2017;11(7):6959–67.PubMedGoogle Scholar
  136. 136.
    Tian H, Six DA, Krucker T, Leeds JA, Winograd N. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem. 2017;89(9):5050–7.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother. 2016;71(3):670–7.PubMedGoogle Scholar
  138. 138.
    Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929;10:226–36.PubMedCentralGoogle Scholar
  139. 139.
    Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6(8):a025247.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Spratt BG. Penicillin-binding proteins and the future of β-lactam antibiotics. The seventh fleming lecture. J Gen Microbiol. 1983;129(5):1247–60.PubMedGoogle Scholar
  141. 141.
    Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev. 2008;32(2):234–58.PubMedGoogle Scholar
  142. 142.
    van Heijenoort J. Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev. 2011;75(4):636–63.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Cho H, Uehara T, Bernhardt TG. Β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159(6):1300–11.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob Agents Chemother. 1998;42(1):1–17.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.PubMedGoogle Scholar
  146. 146.
    Medeiros AA. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis. 1997;24(Suppl 1):S19–45.PubMedGoogle Scholar
  147. 147.
    Rossolini GM, Docquier JD. New β-lactamases: a paradigm for the rapid response of bacterial evolution in the clinical setting. Future Microbiol. 2006;1(3):295–308.PubMedGoogle Scholar
  148. 148.
    De Pascale G, Wright GD. Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. Chembiochem. 2010;11(10):1325–34.PubMedGoogle Scholar
  149. 149.
    Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208(5007):239–41.PubMedGoogle Scholar
  150. 150.
    Bonomo RA. β-Lactamases: a focus on current challenges. Cold Spring Harb Perspect Med. 2017;7(1):a025239.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315–7.PubMedGoogle Scholar
  152. 152.
    Ramphal R, Ambrose PG. Extended-spectrum β-lactamases and clinical outcomes: current data. Clin Infect Dis. 2006;42(Suppl 4):S164–72.PubMedGoogle Scholar
  153. 153.
    Bush K. Extended-spectrum β-lactamases in North America, 1987–2006. Clin Microbiol Infect. 2008;14(Suppl 1):134–43.PubMedGoogle Scholar
  154. 154.
    Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol. 2011;65:455–78.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Livermore DM. Defining an extended-spectrum β-lactamase. Clin Microbiol Infect. 2008;14(Suppl 1):3–10.PubMedGoogle Scholar
  156. 156.
    Fournier D, Hocquet D, Dehecq B, Cholley P, Plesiat P. Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. J Antimicrob Chemother. 2010;65(2):364–5.PubMedGoogle Scholar
  157. 157.
    Castanheira M, Mendes RE, Jones RN, Sader HS. Changes in the frequencies of β-Lactamase genes among Enterobacteriaceae isolates in U.S. hospitals, 2012 to 2014: activity of ceftazidime-avibactam tested against β-Lactamase-producing isolates. Antimicrob Agents Chemother. 2016;60(8):4770–7.PubMedPubMedCentralGoogle Scholar
  158. 158.
    European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2017.Google Scholar
  159. 159.
    Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–74.PubMedGoogle Scholar
  160. 160.
    Naas T, Poirel L, Nordmann P. Minor extended-spectrum β-lactamases. Clin Microbiol Infect. 2008;14(Suppl 1):42–52.PubMedGoogle Scholar
  161. 161.
    Viale P, Giannella M, Bartoletti M, Tedeschi S, Lewis R. Considerations about antimicrobial stewardship in settings with epidemic extended-spectrum β-lactamase-producing or carbapenem-resistant Enterobacteriaceae. Infect Dis Ther. 2015;4(Suppl 1):65–83.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Drawz SM, Taracila M, Caselli E, Prati F, Bonomo RA. Exploring sequence requirements for C(3)/C(4) carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase. Protein Sci. 2011;20(6):941–58.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Perez-Gallego M, Torrens G, Castillo-Vera J, Moya B, Zamorano L, Cabot G, et al. Impact of AmpC derepression on fitness and virulence: the mechanism or the pathway? MBio. 2016;7(5):e01783.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Caroff N, Espaze E, Gautreau D, Richet H, Reynaud A. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing ampC. J Antimicrob Chemother. 2000;45(6):783–8.PubMedGoogle Scholar
  166. 166.
    Forward KR, Willey BM, Low DE, McGeer A, Kapala MA, Kapala MM, et al. Molecular mechanisms of cefoxitin resistance in Escherichia coli from the Toronto area hospitals. Diagn Microbiol Infect Dis. 2001;41(1-2):57–63.PubMedGoogle Scholar
  167. 167.
    Olsson O, Bergstrom S, Lindberg FP, Normark S. ampC β-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. Proc Natl Acad Sci U S A. 1983;80(24):7556–60.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Bauernfeind A, Stemplinger I, Jungwirth R, Wilhelm R, Chong Y. Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other β-lactamase genes. Antimicrob Agents Chemother. 1996;40(8):1926–30.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002;46(1):1–11.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States. Antimicrob Agents Chemother. 2004;48(2):533–7.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Tsakris A, Poulou A, Markou F, Pitiriga V, Piperaki ET, Kristo I, et al. Dissemination of clinical isolates of Klebsiella oxytoca harboring CMY-31, VIM-1, and a New OXY-2-type variant in the community. Antimicrob Agents Chemother. 2011;55(7):3164–8.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Pitout JD. Enterobacteriaceae that produce extended-spectrum β-lactamases and AmpC β-lactamases in the community: the tip of the iceberg? Curr Pharm Des. 2013;19(2):257–63.PubMedGoogle Scholar
  173. 173.
    Wang XD, Cai JC, Zhou HW, Zhang R, Chen GX. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated β-lactamase production and OmpK36 porin deficiency. J Med Microbiol. 2009;58(Pt 9):1196–202.PubMedGoogle Scholar
  174. 174.
    Martinez-Martinez L, Pascual A, Hernandez-Alles S, Alvarez-Diaz D, Suarez AI, Tran J, et al. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob Agents Chemother. 1999;43(7):1669–73.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Armand-Lefevre L, Leflon-Guibout V, Bredin J, Barguellil F, Amor A, Pages JM, et al. Imipenem resistance in Salmonella enterica serovar Wien related to porin loss and CMY-4 β-lactamase production. Antimicrob Agents Chemother. 2003;47(3):1165–8.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Shin SY, Bae IK, Kim J, Jeong SH, Yong D, Kim JM, et al. Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol. 2012;61(Pt 2):239–45.PubMedGoogle Scholar
  177. 177.
    Tsai YK, Liou CH, Fung CP, Lin JC, Siu LK. Single or in combination antimicrobial resistance mechanisms of Klebsiella pneumoniae contribute to varied susceptibility to different carbapenems. PLoS One. 2013;8(11):e79640.PubMedPubMedCentralGoogle Scholar
  178. 178.
    Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–58.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36(Suppl 3):S8–14.PubMedGoogle Scholar
  180. 180.
    Yang YJ, Wu PJ, Livermore DM. Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother. 1990;34(5):755–8.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016;3(1):15–21.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Archibald L, Phillips L, Monnet D, McGowan JE Jr, Tenover F, Gaynes R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis. 1997;24(2):211–5.PubMedGoogle Scholar
  183. 183.
    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Cristina ML, Sartini M, Ottria G, Schinca E, Cenderello N, Crisalli MP, et al. Epidemiology and biomolecular characterization of carbapenem-resistant klebsiella pneumoniae in an Italian hospital. J Prev Med Hyg. 2016;57(3):E149–E56.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–63.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Donald HM, Scaife W, Amyes SG, Young HK. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000;44(1):196–9.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Potter RF, D’Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat. 2016;29:30–46.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Branas P, Villa J, Viedma E, Mingorance J, Orellana MA, Chaves F. Molecular epidemiology of carbapenemase-producing Klebsiella pneumoniae in a hospital in Madrid: Successful establishment of an OXA-48 ST11 clone. Int J Antimicrob Agents. 2015;46(1):111–6.PubMedGoogle Scholar
  190. 190.
    Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol. 2016;11:809–23.PubMedGoogle Scholar
  191. 191.
    Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18(2):306–25.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–90.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC, et al. Spread of integron-associated VIM-type metallo-β-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J Clin Microbiol. 2003;41(2):822–5.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-β-lactamase on β-lactam antibiotics. Infect Drug Resist. 2015;8:297–309.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Borgia S, Lastovetska O, Richardson D, Eshaghi A, Xiong J, Chung C, et al. Outbreak of carbapenem-resistant Enterobacteriaceae containing blaNDM-1, Ontario, Canada. Clin Infect Dis. 2012;55(11):e109–17.PubMedGoogle Scholar
  196. 196.
    Sugawara E, Kojima S, Nikaido H. Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-Lactams than their Escherichia coli Homologs OmpF and OmpC. J Bacteriol. 2016;198(23):3200–8.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Adams-Sapper S, Nolen S, Donzelli GF, Lal M, Chen K, Justo da Silva LH, et al. Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2015;59(6):3281–9.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Castanheira M, Mills JC, Farrell DJ, Jones RN. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother. 2014;58(11):6844–50.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771–8.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother. 1997;41(3):563–9.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Yamachika S, Sugihara C, Kamai Y, Yamashita M. Correlation between penicillin-binding protein 2 mutations and carbapenem resistance in Escherichia coli. J Med Microbiol. 2013;62(Pt 3):429–36.PubMedGoogle Scholar
  202. 202.
    Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70(5):1420–8.PubMedGoogle Scholar
  203. 203.
    Zhang Y, Kashikar A, Brown CA, Denys G, Bush K. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested In vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother. 2017;61(8):e00389.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Durand-Reville TF, Guler S, Comita-Prevoir J, Chen B, Bifulco N, Huynh H, et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol. 2017;2:17104.PubMedGoogle Scholar
  205. 205.
    Reading C, Cole M. Clavulanic acid: a β-lactamase-inhiting β-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977;11(5):852–7.PubMedPubMedCentralGoogle Scholar
  206. 206.
    English AR, Retsema JA, Girard AE, Lynch JE, Barth WE. CP-45,899, a β-lactamase inhibitor that extends the antibacterial spectrum of β-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978;14(3):414–9.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Fisher J, Belasco JG, Charnas RL, Khosla S, Knowles JR. Β-lactamase inactivation by mechanism-based reagents. Philos Trans R Soc Lond Ser B Biol Sci. 1980;289(1036):309–19.Google Scholar
  208. 208.
    Cole M. Biochemistry and action of clavulanic acid. Scott Med J. 1982;27:S10–6.PubMedGoogle Scholar
  209. 209.
    Brown RP, Aplin RT, Schofield CJ. Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Biochemistry. 1996;35(38):12421–32.PubMedGoogle Scholar
  210. 210.
    Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Sulton D, Pagan-Rodriguez D, Zhou X, Liu Y, Hujer AM, Bethel CR, et al. Clavulanic acid inactivation of SHV-1 and the inhibitor-resistant S130G SHV-1 β-lactamase. Insights into the mechanism of inhibition. J Biol Chem. 2005;280(42):35528–36.PubMedGoogle Scholar
  212. 212.
    Weber DA, Sanders CC. Diverse potential of β-lactamase inhibitors to induce class I enzymes. Antimicrob Agents Chemother. 1990;34(1):156–8.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol. 2011;14(5):550–5.PubMedGoogle Scholar
  214. 214.
    Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, et al. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A. 2012;109(29):11663–8.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Humphries RM, Hemarajata P. Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob Agents Chemother. 2017;61(6):e00537.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, et al. Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother. 2017;61(4):e02243.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Fass RJ, Gregory WW, D’Amato RF, Matsen JM, Wright DN, Young LS. In vitro activities of cefoperazone and sulbactam singly and in combination against cefoperazone-resistant members of the family Enterobacteriaceae and nonfermenters. Antimicrob Agents Chemother. 1990;34(11):2256–9.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015;58(9):3682–92.PubMedGoogle Scholar
  219. 219.
    Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, et al. Activity of meropenem combined with RPX7009, a novel β-Lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob Agents Chemother. 2015;59(8):4856–60.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the β-Lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(9):5454–8.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, et al. Vaborbactam: spectrum of Β-Lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e01443.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother. 2014;58(4):1835–46.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Reck F, Bermingham A, Blais J, Capka V, Cariaga T, Casarez A, et al. Optimization of novel monobactams with activity against carbapenem-resistant Enterobacteriaceae - Identification of LYS228. Bioorg Med Chem Lett. 2018;28(4):748-755. doi: 10.1016/j.bmcl.2018.01.006.Google Scholar
  224. 224.
    Blais J, Lopez S, Ruzin A, Leeds JA, Dean CR, Simmons RL, Casarez A, Reck F. LYS228 is a novel monobactam with potent activity in vitro against ESBL-producing and Carbapenem-resistant Enterobacteriaceae. Abstracts of microbe 2017. New Orleans, USA; 2017; June 1–5.Google Scholar
  225. 225.
    Mendes RE, Rhomberg PR, Schaeffer B, Huband MD, Flamm RK. In vitro activity of LYS228 against Enterobacteriaceae, including molecularly characterized multidrug-resistant isolates. Abstracts of microbe 2017. New Orleans; 2017; June 1–5.Google Scholar
  226. 226.
    King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014;510(7506):503–6.PubMedPubMedCentralGoogle Scholar
  227. 227.
    Hinchliffe P, Gonzalez MM, Mojica MF, Gonzalez JM, Castillo V, Saiz C, et al. Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A. 2016;113(26):E3745–54.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Hecker SJ, Reddy KR, Glinka TW, Totrov M, Lomovskaya O, Tsivkovski R, Rubio-Aparicio D, Clifton MC, Atkins K, Fairman JF, Griffith DC, Dudley MN. Discovery of a new series of broad-spectrum carbapenemase inhibitors (BCIs) with activity vs serine and metallo Β-lactamases. Abstracts of the 55th interscience conference on antimicrobial agents and chemotherapy. San Diego: 2015; F–270.Google Scholar
  229. 229.
    Jones-Dias D, Manageiro V, Ferreira E, Louro D. Antibiotic resistance surveillance program in Portugal p, Canica M. Diversity of extended-spectrum and plasmid-mediated AmpC β-lactamases in Enterobacteriaceae isolates from Portuguese health care facilities. J Microbiol. 2014;52(6):496–503.PubMedGoogle Scholar
  230. 230.
    Canton R, Morosini MI, de la Maza OM, de la Pedrosa EG. IRT and CMT β-lactamases and inhibitor resistance. Clin Microbiol Infect. 2008;14(Suppl 1):53–62.PubMedGoogle Scholar
  231. 231.
    Martinez JL, Cercenado E, Rodriguez-Creixems M, Vincente-Perez MF, Delgado-Iribarren A, Baquero F. Resistance to β-lactam/clavulanate. Lancet. 1987;2(8573):1473.PubMedGoogle Scholar
  232. 232.
    Martinez JL, Vicente MF, Delgado-Iribarren A, Perez-Diaz JC, Baquero F. Small plasmids are involved in amoxicillin-clavulanate resistance in Escherichia coli. Antimicrob Agents Chemother. 1989;33(4):595.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother. 1999;43(4):882–9.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Derbyshire H, Kay G, Evans K, Vaughan C, Kavuri U, Winstanley T. A simple disc diffusion method for detecting AmpC and extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae. J Antimicrob Chemother. 2009;63(3):497–501.PubMedGoogle Scholar
  235. 235.
    Yan JJ, Ko WC, Jung YC, Chuang CL, Wu JJ. Emergence of Klebsiella pneumoniae Isolates producing inducible DHA-1 -lactamase in a university hospital in Taiwan. J Clin Microbiol. 2002;40(9):3121–6.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Nikaido H, Pages JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev. 2012;36(2):340–63.PubMedGoogle Scholar
  237. 237.
    Pages JM, Peslier S, Keating TA, Lavigne JP, Nichols WW. Role of the outer membrane and porins in susceptibility of β-lactamase-oroducing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother. 2015;60(3):1349–59.PubMedGoogle Scholar
  238. 238.
    Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, et al. Activity of imipenem with relebactam against Gram-Negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029–31.PubMedPubMedCentralGoogle Scholar
  239. 239.
    Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, et al. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59(2):1020–9.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Livermore DM, Mushtaq S, Barker K, Hope R, Warner M, Woodford N. Characterization of β-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline + avibactam (NXL104). J Antimicrob Chemother. 2012;67(6):1354–8.PubMedGoogle Scholar
  241. 241.
    Blazquez J, Baquero MR, Canton R, Alos I, Baquero F. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother. 1993;37(10):2059–63.PubMedPubMedCentralGoogle Scholar
  242. 242.
    Vedel G, Belaaouaj A, Gilly L, Labia R, Philippon A, Nevot P, et al. Clinical isolates of Escherichia coli producing TRI β-lactamases: novel TEM-enzymes conferring resistance to β-lactamase inhibitors. J Antimicrob Chemother. 1992;30(4):449–62.PubMedGoogle Scholar
  243. 243.
    Belaaouaj A, Lapoumeroulie C, Canica MM, Vedel G, Nevot P, Krishnamoorthy R, et al. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett. 1994;120(1-2):75–80.PubMedGoogle Scholar
  244. 244.
    Lemozy J, Sirot D, Chanal C, Huc C, Labia R, Dabernat H, et al. First characterization of inhibitor-resistant TEM (IRT) β-lactamases in Klebsiella pneumoniae strains. Antimicrob Agents Chemother. 1995;39(11):2580–2.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Bret L, Chanal C, Sirot D, Labia R, Sirot J. Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 β-lactamase produced by Proteus mirabilis strains. J Antimicrob Chemother. 1996;38(2):183–91.PubMedGoogle Scholar
  246. 246.
    Sirot D, Chanal C, Bonnet R, De Champs C, Bret L. Inhibitor-resistant TEM-33 β-lactamase in a Shigella sonnei isolate. Antimicrob Agents Chemother. 2001;45(7):2179–80.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Hunter JE, Corkill JE, McLennan AG, Fletcher JN, Hart CA. Plasmid encoded β-lactamases resistant to inhibition by clavulanic acid produced by calf faecal coliforms. Res Vet Sci. 1993;55(3):367–70.PubMedGoogle Scholar
  248. 248.
    Manageiro V, Ferreira E, Cougnoux A, Albuquerque L, Canica M, Bonnet R. Characterization of the inhibitor-resistant SHV β-lactamase SHV-107 in a clinical Klebsiella pneumoniae strain coproducing GES-7 enzyme. Antimicrob Agents Chemother. 2012;56(2):1042–6.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Bonomo RA, Rudin SA, Shlaes DM. Tazobactam is a potent inactivator of selected inhibitor-resistant class A β-lactamases. FEMS Microbiol Lett. 1997;148(1):59–62.PubMedGoogle Scholar
  250. 250.
    Chaibi EB, Sirot D, Paul G, Labia R. Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother. 1999;43(4):447–58.PubMedGoogle Scholar
  251. 251.
    Pagan-Rodriguez D, Zhou X, Simmons R, Bethel CR, Hujer AM, Helfand MS, et al. Tazobactam inactivation of SHV-1 and the inhibitor-resistant Ser130 -->Gly SHV-1 β-lactamase: insights into the mechanism of inhibition. J Biol Chem. 2004;279(19):19494–501.Google Scholar
  252. 252.
    Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9(4):228–36.PubMedGoogle Scholar
  253. 253.
    Papp-Wallace KM, Bethel CR, Distler AM, Kasuboski C, Taracila M, Bonomo RA. Inhibitor resistance in the KPC-2 β-lactamase, a preeminent property of this class A β-lactamase. Antimicrob Agents Chemother. 2010;54(2):890–7.PubMedGoogle Scholar
  254. 254.
    Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59(9):5324–30.PubMedPubMedCentralGoogle Scholar
  255. 255.
    Winkler ML, Papp-Wallace KM, Taracila MA, Bonomo RA. Avibactam and inhibitor-resistant SHV β-lactamases. Antimicrob Agents Chemother. 2015;59(7):3700–9.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):e02097.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Lahiri SD, Bradford PA, Nichols WW, Alm RA. Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Omega-loop variations. J Antimicrob Chemother. 2016;71(10):2848–55.PubMedGoogle Scholar
  258. 258.
    Drlica K, Malik M. Fluoroquinolones: action and resistance. Curr Top Med Chem. 2003;3(3):249–82.PubMedGoogle Scholar
  259. 259.
    Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.PubMedGoogle Scholar
  260. 260.
    Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X. Quinolones: action and resistance updated. Curr Top Med Chem. 2009;9(11):981–98.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Hiasa H, Yousef DO, Marians KJ. DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J Biol Chem. 1996;271(42):26424–9.PubMedGoogle Scholar
  262. 262.
    Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol. 1994;242(4):351–63.PubMedGoogle Scholar
  263. 263.
    Shea ME, Hiasa H. Interactions between DNA helicases and frozen topoisomerase IV-quinolone-DNA ternary complexes. J Biol Chem. 1999;274(32):22747–54.PubMedGoogle Scholar
  264. 264.
    Brazas MD, Hancock RE. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(8):3222–7.PubMedPubMedCentralGoogle Scholar
  265. 265.
    Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect Drug Resist. 2015;8:49–61.PubMedPubMedCentralGoogle Scholar
  266. 266.
    Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354:12–31.PubMedPubMedCentralGoogle Scholar
  267. 267.
    Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature. 1997;388(6645):903–6.PubMedGoogle Scholar
  268. 268.
    Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother. 1990;34(6):1271–2.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Laponogov I, Veselkov DA, Crevel IM, Pan XS, Fisher LM, Sanderson MR. Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res. 2013;41(21):9911–23.PubMedPubMedCentralGoogle Scholar
  270. 270.
    Wohlkonig A, Chan PF, Fosberry AP, Homes P, Huang J, Kranz M, et al. Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol. 2010;17(9):1152–3.PubMedGoogle Scholar
  271. 271.
    Willmott CJ, Maxwell A. A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex. Antimicrob Agents Chemother. 1993;37(1):126–7.PubMedPubMedCentralGoogle Scholar
  272. 272.
    Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565–74.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Bagel S, Hullen V, Wiedemann B, Heisig P. Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob Agents Chemother. 1999;43(4):868–75.PubMedPubMedCentralGoogle Scholar
  274. 274.
    Komp Lindgren P, Marcusson LL, Sandvang D, Frimodt-Moller N, Hughes D. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob Agents Chemother. 2005;49(6):2343–51.PubMedGoogle Scholar
  275. 275.
    Bruchmann S, Dotsch A, Nouri B, Chaberny IF, Haussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother. 2013;57(3):1361–8.PubMedPubMedCentralGoogle Scholar
  276. 276.
    Kriengkauykiat J, Porter E, Lomovskaya O, Wong-Beringer A. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):565–70.PubMedPubMedCentralGoogle Scholar
  277. 277.
    Paltansing S, Tengeler AC, Kraakman ME, Claas EC, Bernards AT. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli. Microb Drug Resist. 2013;19(6):469–76.PubMedGoogle Scholar
  278. 278.
    Mazzariol A, Zuliani J, Cornaglia G, Rossolini GM, Fontana R. AcrAB Efflux system: expression and contribution to fluoroquinolone resistance in Klebsiella spp. Antimicrob Agents Chemother. 2002;46(12):3984–6.PubMedPubMedCentralGoogle Scholar
  279. 279.
    Le Thomas I, Couetdic G, Clermont O, Brahimi N, Plesiat P, Bingen E. In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother. 2001;48(4):553–5.PubMedGoogle Scholar
  280. 280.
    Chapman JS, Georgopapadakou NH. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988;32(4):438–42.PubMedPubMedCentralGoogle Scholar
  281. 281.
    Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother. 2006;58(6):1274–8.PubMedGoogle Scholar
  282. 282.
    Miro E, Verges C, Garcia I, Mirelis B, Navarro F, Coll P, et al. Resistance to quinolones and β-lactams in Salmonella enterica due to mutations in topoisomerase-encoding genes, altered cell permeability and expression of an active efflux system. Enferm Infecc Microbiol Clin. 2004;22(4):204–11.PubMedGoogle Scholar
  283. 283.
    Randall LP, Woodward MJ. The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci. 2002;72(2):87–93.PubMedGoogle Scholar
  284. 284.
    Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351(9105):797–9.PubMedGoogle Scholar
  285. 285.
    Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50(4):1178–82.PubMedPubMedCentralGoogle Scholar
  286. 286.
    Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, et al. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother. 2005;49(2):801–3.PubMedPubMedCentralGoogle Scholar
  287. 287.
    Vetting MW, Hegde SS, Fajardo JE, Fiser A, Roderick SL, Takiff HE, et al. Pentapeptide repeat proteins. Biochemistry. 2006;45(1):1–10.PubMedPubMedCentralGoogle Scholar
  288. 288.
    Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638–42.PubMedPubMedCentralGoogle Scholar
  289. 289.
    Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49(7):3050–2.PubMedPubMedCentralGoogle Scholar
  290. 290.
    Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005;49(1):118–25.PubMedPubMedCentralGoogle Scholar
  291. 291.
    Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem. 2011;286(28):25265–73.PubMedPubMedCentralGoogle Scholar
  292. 292.
    Jacoby GA, Hooper DC. Phylogenetic analysis of chromosomally determined qnr and related proteins. Antimicrob Agents Chemother. 2013;57(4):1930–4.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother. 2006;50(8):2872–4.PubMedPubMedCentralGoogle Scholar
  294. 294.
    Briales A, Rodriguez-Martinez JM, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, et al. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6’)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain. Int J Antimicrob Agents. 2012;39(5):431–4.PubMedGoogle Scholar
  295. 295.
    Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629–40.PubMedGoogle Scholar
  296. 296.
    Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr. 2014;2(5).
  297. 297.
    Guillard T, Grillon A, de Champs C, Cartier C, Madoux J, Bercot B, et al. Mobile insertion cassette elements found in small non-transmissible plasmids in Proteeae may explain qnrD mobilization. PLoS One. 2014;9(2):e87801.PubMedPubMedCentralGoogle Scholar
  298. 298.
    Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8.PubMedGoogle Scholar
  299. 299.
    Hansen LH, Jensen LB, Sorensen HI, Sorensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007;60(1):145–7.PubMedGoogle Scholar
  300. 300.
    Hansen LH, Johannesen E, Burmolle M, Sorensen AH, Sorensen SJ. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother. 2004;48(9):3332–7.PubMedPubMedCentralGoogle Scholar
  301. 301.
    Sorensen AH, Hansen LH, Johannesen E, Sorensen SJ. Conjugative plasmid conferring resistance to olaquindox. Antimicrob Agents Chemother. 2003;47(2):798–9.PubMedPubMedCentralGoogle Scholar
  302. 302.
    Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(8):3582–4.PubMedPubMedCentralGoogle Scholar
  303. 303.
    Li L, Liao X, Yang Y, Sun J, Li L, Liu B, et al. Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother. 2013;68(10):2263–8.PubMedGoogle Scholar
  304. 304.
    Liu BT, Yang QE, Li L, Sun J, Liao XP, Fang LX, et al. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in Escherichia coli isolates from food-producing animals. PLoS One. 2013;8(9):e73947.PubMedPubMedCentralGoogle Scholar
  305. 305.
    Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, et al. Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrob Agents Chemother. 2010;54(10):4219–24.PubMedPubMedCentralGoogle Scholar
  306. 306.
    Perez F, Rudin SD, Marshall SH, Coakley P, Chen L, Kreiswirth BN, et al. OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob Agents Chemother. 2013;57(9):4602–3.PubMedPubMedCentralGoogle Scholar
  307. 307.
    Wong MH, Chan EW, Chen S. Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother. 2015;59(6):3290–7.PubMedPubMedCentralGoogle Scholar
  308. 308.
    Bialek-Davenet S, Lavigne JP, Guyot K, Mayer N, Tournebize R, Brisse S, et al. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(1):81–8.PubMedGoogle Scholar
  309. 309.
    Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51(9):3354–60.PubMedPubMedCentralGoogle Scholar
  310. 310.
    Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52(10):3801–4.PubMedPubMedCentralGoogle Scholar
  311. 311.
    Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother. 2007;51(7):2464–9.PubMedPubMedCentralGoogle Scholar
  312. 312.
    Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis. 2002;185(4):561–5.PubMedGoogle Scholar
  313. 313.
    Singh R, Swick MC, Ledesma KR, Yang Z, Hu M, Zechiedrich L, et al. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother. 2012;56(4):1680–5.PubMedPubMedCentralGoogle Scholar
  314. 314.
    Lomovskaya O, Lee A, Hoshino K, Ishida H, Mistry A, Warren MS, et al. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(6):1340–6.PubMedPubMedCentralGoogle Scholar
  315. 315.
    Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007;39(3):162–76.PubMedGoogle Scholar
  316. 316.
    Hsu DI, Okamoto MP, Murthy R, Wong-Beringer A. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J Antimicrob Chemother. 2005;55(4):535–41.PubMedGoogle Scholar
  317. 317.
    Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA. 2003;289(7):885–8.PubMedGoogle Scholar
  318. 318.
    Poirel L, Cattoir V, Nordmann P. Is plasmid-mediated quinolone resistance a clinically significant problem? Clin Microbiol Infect. 2008;14(4):295–7.PubMedGoogle Scholar
  319. 319.
    Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 2005;3(6):e176.PubMedPubMedCentralGoogle Scholar
  320. 320.
    Bassetti M, Della Siega P, Pecori D, Scarparo C, Righi E. Delafloxacin for the treatment of respiratory and skin infections. Expert Opin Investig Drugs. 2015;24(3):433–42.PubMedGoogle Scholar
  321. 321.
    Hoover R, Marbury TC, Preston RA, Quintas M, Lawrence LE, Paulson SK, et al. Clinical pharmacology of delafloxacin in patients with hepatic impairment. J Clin Pharmacol. 2017;57(3):328–35.PubMedGoogle Scholar
  322. 322.
    Flamm RK, Rhomberg PR, Huband MD, Farrell DJ. In vitro activity of delafloxacin tested against isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother. 2016;60(10):6381–5.PubMedPubMedCentralGoogle Scholar
  323. 323.
    Nayar AS, Dougherty TJ, Reck F, Thresher J, Gao N, Shapiro AB, et al. Target-based resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a novel bacterial type II topoisomerase inhibitor. Antimicrob Agents Chemother. 2015;59(1):331–7.PubMedGoogle Scholar
  324. 324.
    Tessier PR, Nicolau DP. In vitro activity of novel gyrase inhibitors against a highly resistant population of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(6):2887–9.PubMedPubMedCentralGoogle Scholar
  325. 325.
    Tari LW, Li X, Trzoss M, Bensen DC, Chen Z, Lam T, et al. Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum dual-targeting antibacterial agents. PLoS One. 2013;8(12):e84409.PubMedPubMedCentralGoogle Scholar
  326. 326.
    Basarab GS, Brassil P, Doig P, Galullo V, Haimes HB, Kern G, et al. Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization. J Med Chem. 2014;57(21):9078–95.PubMedGoogle Scholar
  327. 327.
    Basarab GS, Kern GH, McNulty J, Mueller JP, Lawrence K, Vishwanathan K, et al. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep. 2015;5:11827.PubMedPubMedCentralGoogle Scholar
  328. 328.
    Foerster S, Golparian D, Jacobsson S, Hathaway LJ, Low N, Shafer WM, et al. Genetic resistance determinants, In vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front Microbiol. 2015;6:1377.PubMedPubMedCentralGoogle Scholar
  329. 329.
    Walker SS, Labroli M, Painter RE, Wiltsie J, Sherborne B, Murgolo N, et al. Antibacterial small molecules targeting the conserved TOPRIM domain of DNA gyrase. PLoS One. 2017;12(7):e0180965.PubMedPubMedCentralGoogle Scholar
  330. 330.
    Hierowski M. Inhibition of protein synthesis by Chlortetracycline in the E. Coli in vitro system. Proc Natl Acad Sci U S A. 1965;53:594–9.PubMedPubMedCentralGoogle Scholar
  331. 331.
    Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103(7):1143–54.PubMedGoogle Scholar
  332. 332.
    Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001;20(8):1829–39.PubMedPubMedCentralGoogle Scholar
  333. 333.
    Duggar BM. Aureomycin; a product of the continuing search for new antibiotics. Ann N Y Acad Sci. 1948;51(Art. 2):177–81.PubMedGoogle Scholar
  334. 334.
    Sum PE, Lee VJ, Testa RT, Hlavka JJ, Ellestad GA, Bloom JD, et al. Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem. 1994;37(1):184–8.PubMedGoogle Scholar
  335. 335.
    Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A, Tsai L, et al. Assessing the efficacy and safety of Eravacycline vs Ertapenem in complicated intra-abdominal infections in the investigating Gram-Negative infections treated with Eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152(3):224–32.PubMedGoogle Scholar
  336. 336.
    Livermore DM, Mushtaq S, Warner M, Woodford N. In Vitro Activity of Eravacycline against Carbapenem-Resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(6):3840–4.PubMedPubMedCentralGoogle Scholar
  337. 337.
    Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol. 1996;165(6):359–69.PubMedGoogle Scholar
  338. 338.
    Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–60.PubMedPubMedCentralGoogle Scholar
  339. 339.
    Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci. 2010;67(3):419–31.PubMedGoogle Scholar
  340. 340.
    Guillaume G, Ledent V, Moens W, Collard JM. Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb Drug Resist. 2004;10(1):11–26.PubMedGoogle Scholar
  341. 341.
    Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992;36(4):695–703.PubMedPubMedCentralGoogle Scholar
  342. 342.
    McMurry L, Petrucci RE Jr, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980;77(7):3974–7.PubMedPubMedCentralGoogle Scholar
  343. 343.
    Ohnuki T, Katoh T, Imanaka T, Aiba S. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J Bacteriol. 1985;161(3):1010–6.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Hillen W, Berens C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol. 1994;48:345–69.PubMedGoogle Scholar
  345. 345.
    Saenger W, Orth P, Kisker C, Hillen W, Hinrichs W. The tetracycline repressor-a paradigm for a biological switch. Angew Chem Int Ed Engl. 2000;39(12):2042–52.PubMedGoogle Scholar
  346. 346.
    Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science. 1994;264(5157):418–20.PubMedGoogle Scholar
  347. 347.
    Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol. 1995;247(2):260–80.PubMedGoogle Scholar
  348. 348.
    Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol. 2000;7(3):215–9.PubMedGoogle Scholar
  349. 349.
    Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother. 1999;43(4):738–44.PubMedPubMedCentralGoogle Scholar
  350. 350.
    Tally FT, Ellestad GA, Testa RT. Glycylcyclines: a new generation of tetracyclines. J Antimicrob Chemother. 1995;35(4):449–52.PubMedGoogle Scholar
  351. 351.
    Testa RT, Petersen PJ, Jacobus NV, Sum PE, Lee VJ, Tally FP. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother. 1993;37(11):2270–7.PubMedPubMedCentralGoogle Scholar
  352. 352.
    Bradford PA, Weaver-Sands DT, Petersen PJ. In vitro activity of tigecycline against isolates from patients enrolled in phase 3 clinical trials of treatment for complicated skin and skin-structure infections and complicated intra-abdominal infections. Clin Infect Dis. 2005;41(Suppl 5):S315–32.PubMedGoogle Scholar
  353. 353.
    Fluit AC, Florijn A, Verhoef J, Milatovic D. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother. 2005;49(4):1636–8.PubMedPubMedCentralGoogle Scholar
  354. 354.
    Petersen PJ, Bradford PA. Effect of medium age and supplementation with the biocatalytic oxygen-reducing reagent oxyrase on in vitro activities of tigecycline against recent clinical isolates. Antimicrob Agents Chemother. 2005;49(9):3910–8.PubMedPubMedCentralGoogle Scholar
  355. 355.
    Fritsche TR, Sader HS, Stilwell MG, Dowzicky MJ, Jones RN. Potency and spectrum of tigecycline tested against an international collection of bacterial pathogens associated with skin and soft tissue infections (2000–2004). Diagn Microbiol Infect Dis. 2005;52(3):195–201.PubMedGoogle Scholar
  356. 356.
    Fritsche TR, Sader HS, Stilwell MG, Dowzicky MJ, Jones RN. Antimicrobial activity of tigecycline tested against organisms causing community-acquired respiratory tract infection and nosocomial pneumonia. Diagn Microbiol Infect Dis. 2005;52(3):187–93.PubMedGoogle Scholar
  357. 357.
    Fritsche TR, Strabala PA, Sader HS, Dowzicky MJ, Jones RN. Activity of tigecycline tested against a global collection of Enterobacteriaceae, including tetracycline-resistant isolates. Diagn Microbiol Infect Dis. 2005;52(3):209–13.PubMedGoogle Scholar
  358. 358.
    Sader HS, Jones RN, Dowzicky MJ, Fritsche TR. Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn Microbiol Infect Dis. 2005;52(3):203–8.PubMedGoogle Scholar
  359. 359.
    Sader HS, Jones RN, Stilwell MG, Dowzicky MJ, Fritsche TR. Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents. Diagn Microbiol Infect Dis. 2005;52(3):181–6.PubMedGoogle Scholar
  360. 360.
    Grossman TH, Starosta AL, Fyfe C, O’Brien W, Rothstein DM, Mikolajka A, et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother. 2012;56(5):2559–64.PubMedPubMedCentralGoogle Scholar
  361. 361.
    Guay GG, Tuckman M, Rothstein DM. Mutations in the tetA(B) gene that cause a change in substrate specificity of the tetracycline efflux pump. Antimicrob Agents Chemother. 1994;38(4):857–60.PubMedPubMedCentralGoogle Scholar
  362. 362.
    Castanheira M, Mendes RE, Jones RN. Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options. Clin Infect Dis. 2014;59(Suppl 6):S367–73.PubMedGoogle Scholar
  363. 363.
    Stein GE, Craig WA. Tigecycline: a critical analysis. Clin Infect Dis. 2006;43(4):518–24.PubMedGoogle Scholar
  364. 364.
    Ruzin A, Keeney D, Bradford PA. AcrAB efflux pump plays a role in decreased susceptibility to tigecycline in Morganella morganii. Antimicrob Agents Chemother. 2005;49(2):791–3.PubMedPubMedCentralGoogle Scholar
  365. 365.
    Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother. 2010;54(6):2720–3.PubMedPubMedCentralGoogle Scholar
  366. 366.
    Veleba M, Schneiders T. Tigecycline resistance can occur independently of the ramA gene in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56(8):4466–7.PubMedPubMedCentralGoogle Scholar
  367. 367.
    Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist. 2007;13(1):1–6.PubMedGoogle Scholar
  368. 368.
    Veleba M, De Majumdar S, Hornsey M, Woodford N, Schneiders T. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Antimicrob Chemother. 2013;68(5):1011–8.PubMedGoogle Scholar
  369. 369.
    Hentschke M, Christner M, Sobottka I, Aepfelbacher M, Rohde H. Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob Agents Chemother. 2010;54(3):1319–22.PubMedGoogle Scholar
  370. 370.
    Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother. 2007;59(5):1001–4.PubMedGoogle Scholar
  371. 371.
    Bratu S, Landman D, Martin DA, Georgescu C, Quale J. Correlation of antimicrobial resistance with β-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City. Antimicrob Agents Chemother. 2008;52(9):2999–3005.PubMedPubMedCentralGoogle Scholar
  372. 372.
    Coyne S, Guigon G, Courvalin P, Perichon B. Screening and quantification of the expression of antibiotic resistance genes in Acinetobacter baumannii with a microarray. Antimicrob Agents Chemother. 2010;54(1):333–40.PubMedGoogle Scholar
  373. 373.
    Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4389–93.PubMedPubMedCentralGoogle Scholar
  374. 374.
    Rumbo C, Gato E, Lopez M, Ruiz de Alegria C, Fernandez-Cuenca F, Martinez-Martinez L, et al. Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(11):5247–57.PubMedPubMedCentralGoogle Scholar
  375. 375.
    Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother. 2003;47(12):3675–81.PubMedPubMedCentralGoogle Scholar
  376. 376.
    Taylor DE. Plasmid-mediated tetracycline resistance in Campylobacter jejuni: expression in Escherichia coli and identification of homology with streptococcal class M determinant. J Bacteriol. 1986;165(3):1037–9.PubMedPubMedCentralGoogle Scholar
  377. 377.
    Doyle D, McDowall KJ, Butler MJ, Hunter IS. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol Microbiol. 1991;5(12):2923–33.PubMedGoogle Scholar
  378. 378.
    Sanchez-Pescador R, Brown JT, Roberts M, Urdea MS. Homology of the TetM with translational elongation factors: implications for potential modes of tetM-conferred tetracycline resistance. Nucleic Acids Res. 1988;16(3):1218.PubMedPubMedCentralGoogle Scholar
  379. 379.
    Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol. 1996;178(11):3246–51.PubMedPubMedCentralGoogle Scholar
  380. 380.
    Spahn CM, Blaha G, Agrawal RK, Penczek P, Grassucci RA, Trieber CA, et al. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell. 2001;7(5):1037–45.PubMedGoogle Scholar
  381. 381.
    Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 2003;22(4):945–53.PubMedPubMedCentralGoogle Scholar
  382. 382.
    Connell SR, Trieber CA, Stelzl U, Einfeldt E, Taylor DE, Nierhaus KH. The tetracycline resistance protein Tet(o) perturbs the conformation of the ribosomal decoding centre. Mol Microbiol. 2002;45(6):1463–72.PubMedGoogle Scholar
  383. 383.
    Donhofer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN. Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci U S A. 2012;109(42):16900–5.PubMedPubMedCentralGoogle Scholar
  384. 384.
    Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Chan KY, et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat Commun. 2013;4:1477.PubMedPubMedCentralGoogle Scholar
  385. 385.
    Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, et al. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother. 2014;58(3):1279–83.PubMedPubMedCentralGoogle Scholar
  386. 386.
    Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, et al. In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother. 2014;58(2):1127–35.PubMedPubMedCentralGoogle Scholar
  387. 387.
    Ross JI, Eady EA, Cove JH, Cunliffe WJ. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother. 1998;42(7):1702–5.PubMedPubMedCentralGoogle Scholar
  388. 388.
    Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ, Kusters JG. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother. 2002;46(9):2996–3000.PubMedPubMedCentralGoogle Scholar
  389. 389.
    Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol. 2002;184(8):2131–40.PubMedPubMedCentralGoogle Scholar
  390. 390.
    Hu M, Nandi S, Davies C, Nicholas RA. High-level chromosomally mediated tetracycline resistance in Neisseria gonorrhoeae results from a point mutation in the rpsJ gene encoding ribosomal protein S10 in combination with the mtrR and penB resistance determinants. Antimicrob Agents Chemother. 2005;49(10):4327–34.PubMedPubMedCentralGoogle Scholar
  391. 391.
    Villa L, Feudi C, Fortini D, Garcia-Fernandez A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother. 2014;58(3):1707–12.PubMedPubMedCentralGoogle Scholar
  392. 392.
    Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Group NCSP, Henderson DK, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148):148ra16.Google Scholar
  393. 393.
    Speer BS, Bedzyk L, Salyers AA. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J Bacteriol. 1991;173(1):176–83.PubMedPubMedCentralGoogle Scholar
  394. 394.
    Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004;279(50):52346–52.PubMedGoogle Scholar
  395. 395.
    Volkers G, Damas JM, Palm GJ, Panjikar S, Soares CM, Hinrichs W. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 9):1758–67.PubMedGoogle Scholar
  396. 396.
    Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett. 2011;585(7):1061–6.PubMedGoogle Scholar
  397. 397.
    Bergeron J, Ammirati M, Danley D, James L, Norcia M, Retsema J, et al. Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob Agents Chemother. 1996;40(9):2226–8.PubMedPubMedCentralGoogle Scholar
  398. 398.
    Jenner L, Starosta AL, Terry DS, Mikolajka A, Filonava L, Yusupov M, et al. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc Natl Acad Sci U S A. 2013;110(10):3812–6.PubMedPubMedCentralGoogle Scholar
  399. 399.
    Olson MW, Ruzin A, Feyfant E, Rush TS, O’Connell J, Bradford PA. Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother. 2006;50(6):2156–66.PubMedPubMedCentralGoogle Scholar
  400. 400.
    Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother. 2004;48(6):2179–84.PubMedPubMedCentralGoogle Scholar
  401. 401.
    Orth P, Schnappinger D, Sum PE, Ellestad GA, Hillen W, Saenger W, et al. Crystal structure of the tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)- 6-demethyl-6-deoxy-tetracycline. J Mol Biol. 1999;285(2):455–61.PubMedGoogle Scholar
  402. 402.
    Sato T, Suzuki Y, Shiraishi T, Honda H, Shinagawa M, Yamamoto S, et al. Tigecycline nonsusceptibility occurs exclusively in fluoroquinolone-resistant Escherichia coli clinical isolates, Including the major multidrug-resistant lineages O25b:H4-ST131-H30R and O1-ST648. Antimicrob Agents Chemother. 2017;61(2):e01654.PubMedPubMedCentralGoogle Scholar
  403. 403.
    Sheng ZK, Hu F, Wang W, Guo Q, Chen Z, Xu X, et al. Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2014;58(11):6982–5.PubMedPubMedCentralGoogle Scholar
  404. 404.
    Trebosc V, Gartenmann S, Royet K, Manfredi P, Totzl M, Schellhorn B, et al. A novel genome-editing platform for drug-resistant Acinetobacter baumannii reveals an AdeR-unrelated tigecycline resistance mechanism. Antimicrob Agents Chemother. 2016;60(12):7263–71.PubMedPubMedCentralGoogle Scholar
  405. 405.
    Linkevicius M, Sandegren L, Andersson DI. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother. 2016;60(2):789–96.PubMedPubMedCentralGoogle Scholar
  406. 406.
    Grossman TH, Fyfe C, O’Brien W, Hackel M, Minyard MB, Waites KB, et al. Fluorocycline TP-271 is potent against complicated community-acquired bacterial pneumonia pathogens. mSphere. 2017;2(1):e00004.PubMedPubMedCentralGoogle Scholar
  407. 407.
    Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36(4):217–30.PubMedGoogle Scholar
  408. 408.
    Adler M, Anjum M, Andersson DI, Sandegren L. Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli. J Antimicrob Chemother. 2016;71(5):1188–98.PubMedGoogle Scholar
  409. 409.
    Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6(6):a027029.PubMedPubMedCentralGoogle Scholar
  410. 410.
    Cunha BA. Aminoglycosides: current role in antimicrobial therapy. Pharmacotherapy. 1988;8(6):334–50.PubMedGoogle Scholar
  411. 411.
    Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001;292(5518):897–902.PubMedGoogle Scholar
  412. 412.
    Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987;327(6121):389–94.PubMedGoogle Scholar
  413. 413.
    Purohit P, Stern S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature. 1994;370(6491):659–62.PubMedGoogle Scholar
  414. 414.
    Woodcock J, Moazed D, Cannon M, Davies J, Noller HF. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 1991;10(10):3099–103.PubMedPubMedCentralGoogle Scholar
  415. 415.
    Davies J, Davis BD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968;243(12):3312–6.PubMedGoogle Scholar
  416. 416.
    Gottfredsson M, Erlendsdottir H, Gudmundsson A, Gudmundsson S. Different patterns of bacterial DNA synthesis during postantibiotic effect. Antimicrob Agents Chemother. 1995;39(6):1314–9.PubMedPubMedCentralGoogle Scholar
  417. 417.
    Anderson NH, Bowman J, Erwin A, Harwood E, Kline T, Mdluli K, Ng S, Pfister KB, Shawar R, Wagman A, Yabannavar A. Antibacterial agents. WO/2004/062601. July 29, 2004.Google Scholar
  418. 418.
    Stubbings W, Bostock J, Ingham E, Chopra I. Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli. J Antimicrob Chemother. 2006;58(2):444–8.PubMedGoogle Scholar
  419. 419.
    Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev. 1987;51(3):341–50.PubMedPubMedCentralGoogle Scholar
  420. 420.
    Kadar B, Kocsis B, Toth A, Damjanova I, Szasz M, Kristof K, et al. Synergistic antibiotic combinations for colistin-resistant Klebsiella pneumoniae. Acta Microbiol Immunol Hung. 2013;60(2):201–9.PubMedGoogle Scholar
  421. 421.
    Clock SA, Tabibi S, Alba L, Kubin CJ, Whittier S, Saiman L. In vitro activity of doripenem alone and in multi-agent combinations against extensively drug-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2013;76(3):343–6.PubMedGoogle Scholar
  422. 422.
    Raja NS, Singh NN. Antimicrobial susceptibility pattern of clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital. J Microbiol Immunol Infect. 2007;40(1):45–9.PubMedGoogle Scholar
  423. 423.
    Ullmann U. In vitro experiments on the working of combinations of gentamicin and β-lactam antibiotics against Pseudonomas aeruginosa (author’s transl). Immun Infekt. 1975;3(2):79–85.PubMedGoogle Scholar
  424. 424.
    Chaudhary M, Shrivastava SM, Varughese L, Sehgal R. Efficacy and safety evaluation of fixed dose combination of cefepime and amikacin in comparison with cefepime alone in treatment of nosocomial pneumonia patients. Curr Clin Pharmacol. 2008;3(2):118–22.PubMedGoogle Scholar
  425. 425.
    Hopefl AW. Overview of synergy with reference to double β-lactam combinations. DICP. 1991;25(9):972–7.PubMedGoogle Scholar
  426. 426.
    Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34(5):634–40.PubMedGoogle Scholar
  427. 427.
    Zembower TR, Noskin GA, Postelnick MJ, Nguyen C, Peterson LR. The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents. 1998;10(2):95–105.PubMedGoogle Scholar
  428. 428.
    Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):862–72.PubMedGoogle Scholar
  429. 429.
    Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, et al. Association between the presence of aminoglycoside-modifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin, and plazomicin against Klebsiella pneumoniae carbapenemase- and extended-spectrum-β-lactamase-producing Enterobacter species. Antimicrob Agents Chemother. 2016;60(9):5208–14.PubMedPubMedCentralGoogle Scholar
  430. 430.
    Gonzalez-Padilla M, Torre-Cisneros J, Rivera-Espinar F, Pontes-Moreno A, Lopez-Cerero L, Pascual A, et al. Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(3):905–13.PubMedGoogle Scholar
  431. 431.
    Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71(4):442–5.PubMedGoogle Scholar
  432. 432.
    Miro E, Grunbaum F, Gomez L, Rivera A, Mirelis B, Coll P, et al. Characterization of aminoglycoside-modifying enzymes in Enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19(2):94–9.PubMedGoogle Scholar
  433. 433.
    Petrosillo N, Vranic-Ladavac M, Feudi C, Villa L, Fortini D, Barisic N, et al. Spread of Enterobacter cloacae carrying blaNDM-1, blaCTX-M-15, blaSHV-12 and plasmid-mediated quinolone resistance genes in a surgical intensive care unit in Croatia. J Glob Antimicrob Resist. 2016;4:44–8.PubMedGoogle Scholar
  434. 434.
    Poirel L, Savov E, Nazli A, Trifonova A, Todorova I, Gergova I, et al. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob Agents Chemother. 2014;58(4):2472–4.PubMedPubMedCentralGoogle Scholar
  435. 435.
    Poirel L, Yilmaz M, Istanbullu A, Arslan F, Mert A, Bernabeu S, et al. Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit in Istanbul, Turkey. Antimicrob Agents Chemother. 2014;58(5):2929–33.PubMedPubMedCentralGoogle Scholar
  436. 436.
    Rahman M, Prasad KN, Pathak A, Pati BK, Singh A, Ovejero CM, et al. RmtC and RmtF 16S rRNA methyltransferase in NDM-1-producing Pseudomonas aeruginosa. Emerg Infect Dis. 2015;21(11):2059–62.PubMedPubMedCentralGoogle Scholar
  437. 437.
    Bradford PA, Dean CR. Resistance of Gram-Negative Bacilli to antimicrobials. In: Fong IW, Drlica K, editors. Antimicrobial aesistance and implications for the twenty-first century. Boston, MA: Springer US; 2008. p. 97–159.Google Scholar
  438. 438.
    Honore N, Marchal G, Cole ST. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;39(3):769–70.PubMedPubMedCentralGoogle Scholar
  439. 439.
    Nessar R, Reyrat JM, Murray A, Gicquel B. Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus. J Antimicrob Chemother. 2011;66(8):1719–24.PubMedPubMedCentralGoogle Scholar
  440. 440.
    Criswell D, Tobiason VL, Lodmell JS, Samuels DS. Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother. 2006;50(2):445–52.PubMedPubMedCentralGoogle Scholar
  441. 441.
    Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16(3):430–50.PubMedPubMedCentralGoogle Scholar
  442. 442.
    Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–71.PubMedPubMedCentralGoogle Scholar
  443. 443.
    Wright GD. Aminoglycoside-modifying enzymes. Curr Opin Microbiol. 1999;2(5):499–503.PubMedGoogle Scholar
  444. 444.
    Kosmidis C, Giannopoulou M, Flountzi A, Markogiannakis A, Goukos D, Petrikkos G, et al. Genetic basis of aminoglycoside resistance following changes in aminoglycoside prescription patterns. J Chemother. 2013;25(4):217–21.PubMedGoogle Scholar
  445. 445.
    Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ. Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6’-N-acetyltransferase Ib and IIa proteins. J Bacteriol. 1992;174(10):3196–203.PubMedPubMedCentralGoogle Scholar
  446. 446.
    Wohlleben W, Arnold W, Bissonnette L, Pelletier A, Tanguay A, Roy PH, et al. On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette. Mol Gen Genet. 1989;217(2-3):202–8.PubMedGoogle Scholar
  447. 447.
    Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6’)-Ib and its bifunctional, fluoroquinolone-active AAC(6’)-Ib-cr variant. Biochemistry. 2008;47(37):9825–35.PubMedPubMedCentralGoogle Scholar
  448. 448.
    Maurice F, Broutin I, Podglajen I, Benas P, Collatz E, Dardel F. Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep. 2008;9(4):344–9.PubMedPubMedCentralGoogle Scholar
  449. 449.
    Grindley ND, Joyce CM. Analysis of the structure and function of the kanamycin-resistance transposon Tn903. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):125–33.PubMedGoogle Scholar
  450. 450.
    Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, et al. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem J. 2013;454(2):191–200.PubMedPubMedCentralGoogle Scholar
  451. 451.
    McKay GA, Thompson PR, Wright GD. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry. 1994;33(22):6936–44.PubMedGoogle Scholar
  452. 452.
    Wiedemann B. Mechanisms of antibiotic resistance and their dissemination of resistance genes in the hospital environment. Infect Control. 1983;4(6):444–7.PubMedGoogle Scholar
  453. 453.
    Jacoby GA, Blaser MJ, Santanam P, Hachler H, Kayser FH, Hare RS, et al. Appearance of amikacin and tobramycin resistance due to 4’-aminoglycoside nucleotidyltransferase [ANT(4’)-II] in gram-negative pathogens. Antimicrob Agents Chemother. 1990;34(12):2381–6.PubMedPubMedCentralGoogle Scholar
  454. 454.
    Coggins BE, McClerren AL, Jiang L, Li X, Rudolph J, Hindsgaul O, et al. Refined solution structure of the LpxC-TU-514 complex and pKa analysis of an active site histidine: insights into the mechanism and inhibitor design. Biochemistry. 2005;44(4):1114–26.PubMedGoogle Scholar
  455. 455.
    Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat. 2001;4(2):106–17.PubMedGoogle Scholar
  456. 456.
    Centron D, Roy PH. Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother. 2002;46(5):1402–9.PubMedPubMedCentralGoogle Scholar
  457. 457.
    Green KD, Garneau-Tsodikova S. Domain dissection and characterization of the aminoglycoside resistance enzyme ANT(3”)-Ii/AAC(6’)-IId from Serratia marcescens. Biochimie. 2013;95(6):1319–25.PubMedPubMedCentralGoogle Scholar
  458. 458.
    Thompson J, Skeggs PA, Cundliffe E. Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet. 1985;201(2):168–73.PubMedGoogle Scholar
  459. 459.
    Beauclerk AA, Cundliffe E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol. 1987;193(4):661–71.PubMedGoogle Scholar
  460. 460.
    Yamane K, Wachino J, Doi Y, Kurokawa H, Arakawa Y. Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis. 2005;11(6):951–3.PubMedPubMedCentralGoogle Scholar
  461. 461.
    Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother. 2003;47(8):2565–71.PubMedPubMedCentralGoogle Scholar
  462. 462.
    Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93.PubMedGoogle Scholar
  463. 463.
    Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, et al. Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Antimicrob Agents Chemother. 2007;51(12):4401–9.PubMedPubMedCentralGoogle Scholar
  464. 464.
    Macfarlane EL, Kwasnicka A, Hancock RE. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology. 2000;146(Pt 10):2543–54.PubMedGoogle Scholar
  465. 465.
    Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49(2):479–87.PubMedPubMedCentralGoogle Scholar
  466. 466.
    Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923–9.PubMedPubMedCentralGoogle Scholar
  467. 467.
    Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000;182(6):1754–6.PubMedPubMedCentralGoogle Scholar
  468. 468.
    Chan YY, Tan TM, Ong YM, Chua KL. BpeAB-OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother. 2004;48(4):1128–35.PubMedPubMedCentralGoogle Scholar
  469. 469.
    Aires JR, Kohler T, Nikaido H, Plesiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 1999;43(11):2624–8.PubMedPubMedCentralGoogle Scholar
  470. 470.
    Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother. 1999;43(12):2975–83.PubMedPubMedCentralGoogle Scholar
  471. 471.
    Jeannot K, Sobel ML, El Garch F, Poole K, Plesiat P. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol. 2005;187(15):5341–6.PubMedPubMedCentralGoogle Scholar
  472. 472.
    Karlowsky JA, Hoban DJ, Zelenitsky SA, Zhanel GG. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa. J Antimicrob Chemother. 1997;40(3):371–6.PubMedGoogle Scholar
  473. 473.
    Yamamoto M, Ueda A, Kudo M, Matsuo Y, Fukushima J, Nakae T, et al. Role of MexZ and PA5471 in transcriptional regulation of mexXY in Pseudomonas aeruginosa. Microbiology. 2009;155(Pt 10):3312–21.PubMedGoogle Scholar
  474. 474.
    Lau CH, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiologyopen. 2015;4(1):121–35.PubMedGoogle Scholar
  475. 475.
    Guenard S, Muller C, Monlezun L, Benas P, Broutin I, Jeannot K, et al. Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(1):221–8.PubMedPubMedCentralGoogle Scholar
  476. 476.
    Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PLoS One. 2009;4(11):e7740.PubMedPubMedCentralGoogle Scholar
  477. 477.
    Taccetti G, Campana S, Neri AS, Boni V, Festini F. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis. J Chemother. 2008;20(2):166–9.PubMedGoogle Scholar
  478. 478.
    Ciofu O, Mandsberg LF, Wang H, Hoiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol. 2012;65(2):215–25.PubMedGoogle Scholar
  479. 479.
    Sadovskaya I, Vinogradov E, Li J, Hachani A, Kowalska K, Filloux A. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated β-(1->3)-glucans, which bind aminoglycosides. Glycobiology. 2010;20(7):895–904.PubMedGoogle Scholar
  480. 480.
    Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426(6964):306–10.PubMedGoogle Scholar
  481. 481.
    Crabbe A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nunez C, Davis R, et al. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. Sci Rep. 2017;7:43321.PubMedPubMedCentralGoogle Scholar
  482. 482.
    Nagant C, Tre-Hardy M, El-Ouaaliti M, Savage P, Devleeschouwer M, Dehaye JP. Interaction between tobramycin and CSA-13 on clinical isolates of Pseudomonas aeruginosa in a model of young and mature biofilms. Appl Microbiol Biotechnol. 2010;88(1):251–63.PubMedGoogle Scholar
  483. 483.
    Burk DL, Hon WC, Leung AK, Berghuis AM. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry. 2001;40(30):8756–64.PubMedGoogle Scholar
  484. 484.
    Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, et al. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell. 1997;89(6):887–95.PubMedGoogle Scholar
  485. 485.
    Sakon J, Liao HH, Kanikula AM, Benning MM, Rayment I, Holden HM. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry. 1993;32(45):11977–84.PubMedGoogle Scholar
  486. 486.
    Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y, Burley SK. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell. 1998;94(4):439–49.PubMedGoogle Scholar
  487. 487.
    Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM. Crystal structure of an aminoglycoside 6’-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure. 1999;7(5):497–507.PubMedGoogle Scholar
  488. 488.
    Caldwell SJ, Berghuis AM. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6’) acetyltransferase-ie/aminoglycoside (2”) phosphotransferase-ia reveals a rigid solution structure. Antimicrob Agents Chemother. 2012;56(4):1899–906.PubMedPubMedCentralGoogle Scholar
  489. 489.
    Burk DL, Ghuman N, Wybenga-Groot LE, Berghuis AM. X-ray structure of the AAC(6’)-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci. 2003;12(3):426–37.PubMedPubMedCentralGoogle Scholar
  490. 490.
    Burk DL, Xiong B, Breitbach C, Berghuis AM. Structures of aminoglycoside acetyltransferase AAC(6’)-Ii in a novel crystal form: structural and normal-mode analyses. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 9):1273–9.PubMedGoogle Scholar
  491. 491.
    Nurizzo D, Shewry SC, Perlin MH, Brown SA, Dholakia JN, Fuchs RL, et al. The crystal structure of aminoglycoside-3’-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J Mol Biol. 2003;327(2):491–506.PubMedGoogle Scholar
  492. 492.
    Young PG, Walanj R, Lakshmi V, Byrnes LJ, Metcalf P, Baker EN, et al. The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2″-phosphotransferase-IIa [APH(2″)-IIa] provide insights into substrate selectivity in the APH(2″) subfamily. J Bacteriol. 2009;191(13):4133–43.PubMedPubMedCentralGoogle Scholar
  493. 493.
    Labby KJ, Garneau-Tsodikova S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem. 2013;5(11):1285–309.PubMedGoogle Scholar
  494. 494.
    Lee JH, Lee CS. Clinical usefulness of arbekacin. Infect Chemother. 2016;48(1):1–11.PubMedPubMedCentralGoogle Scholar
  495. 495.
    Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Arbekacin activity against contemporary clinical bacteria isolated from patients hospitalized with pneumonia. Antimicrob Agents Chemother. 2015;59(6):3263–70.PubMedPubMedCentralGoogle Scholar
  496. 496.
    Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011;66(1):48–53.PubMedGoogle Scholar
  497. 497.
    Ago K, Umemura E, Takahashi Y, Igarashi M, Hayashi C, Shibasaki M, Yamada K, Ida T, Yonezawa M. TS3112, a novel aminoglycoside antibiotic active against multidrug-resistant pathogens producing 16S rRNA methyltransferases: synthesis and structure-activity relationships ASM microbe 2017; New Orleans; 2017 Jun 4.Google Scholar
  498. 498.
    Hamed K, Debonnett L. Tobramycin inhalation powder for the treatment of pulmonary Pseudomonas aeruginosa infection in patients with cystic fibrosis: a review based on clinical evidence. Ther Adv Respir Dis. 2017;11(5):193–209.PubMedPubMedCentralGoogle Scholar
  499. 499.
    McKeage K. Tobramycin inhalation powder: a review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs. 2013;73(16):1815–27.PubMedGoogle Scholar
  500. 500.
    Niederman MS, Chastre J, Corkery K, Fink JB, Luyt CE, Garcia MS. BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia. Intensive Care Med. 2012;38(2):263–71.PubMedGoogle Scholar
  501. 501.
    Luyt CE, Eldon MA, Stass H, Gribben D, Corkery K, Chastre J. Pharmacokinetics and tolerability of amikacin administered as BAY41-6551 aerosol in mechanically ventilated patients with gram-negative pneumonia and acute renal failure. J Aerosol Med Pulm Drug Deliv. 2011;24(4):183–90.PubMedGoogle Scholar
  502. 502.
    Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D. 2002;58:1948–54.PubMedGoogle Scholar
  503. 503.
    Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med. 1970;72(6):857–68.PubMedGoogle Scholar
  504. 504.
    Yow EM, Moyer JH. Toxicity of polymyxin B. II. Human studies with particular reference to evaluation of renal function. AMA Arch Intern Med. 1953;92(2):248–57.PubMedGoogle Scholar
  505. 505.
    Velkov T, Thompson PE, Nation RL, Li J. Structure--activity relationships of polymyxin antibiotics. J Med Chem. 2010;53(5):1898–916.PubMedPubMedCentralGoogle Scholar
  506. 506.
    Pristovsek P, Kidric J. The search for molecular determinants of LPS inhibition by proteins and peptides. Curr Top Med Chem. 2004;4(11):1185–201.PubMedGoogle Scholar
  507. 507.
    Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother. 2012;56(11):5642–9.PubMedPubMedCentralGoogle Scholar
  508. 508.
    Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot (Tokyo). 2014;67(2):147–51.PubMedGoogle Scholar
  509. 509.
    Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.PubMedPubMedCentralGoogle Scholar
  510. 510.
    Nowicki EM, O’Brien JP, Brodbelt JS, Trent MS. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system. Mol Microbiol. 2015;97(1):166–78.PubMedPubMedCentralGoogle Scholar
  511. 511.
    Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-regulated deacetylase required for lipid A modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59(12):7911–4.PubMedPubMedCentralGoogle Scholar
  512. 512.
    Rubin EJ, Herrera CM, Crofts AA, Trent MS. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(4):2051–61.PubMedPubMedCentralGoogle Scholar
  513. 513.
    Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, et al. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell. 2007;26(2):165–74.PubMedGoogle Scholar
  514. 514.
    Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122(3):461–72.PubMedGoogle Scholar
  515. 515.
    Gunn JS, Richards SM. Recognition and integration of multiple environmental signals by the bacterial sensor kinase PhoQ. Cell Host Microbe. 2007;1(3):163–5.PubMedGoogle Scholar
  516. 516.
    Schurek KN, Sampaio JL, Kiffer CR, Sinto S, Mendes CM, Hancock RE. Involvement of pmrAB and phoPQ in polymyxin B adaptation and inducible resistance in non-cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(10):4345–51.PubMedPubMedCentralGoogle Scholar
  517. 517.
    Pragasam AK, Shankar C, Veeraraghavan B, Biswas I, Nabarro LE, Inbanathan FY, et al. Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India-a first report. Front Microbiol. 2016;7:2135.PubMedGoogle Scholar
  518. 518.
    Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Gaibani P, et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob Agents Chemother. 2014;58(8):4399–403.PubMedPubMedCentralGoogle Scholar
  519. 519.
    Cheng HY, Chen YF, Peng HL. Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J Biomed Sci. 2010;17:60.PubMedPubMedCentralGoogle Scholar
  520. 520.
    Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother. 2014;58(8):4762–6.PubMedPubMedCentralGoogle Scholar
  521. 521.
    Moskowitz SM, Brannon MK, Dasgupta N, Pier M, Sgambati N, Miller AK, et al. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2012;56(2):1019–30.PubMedPubMedCentralGoogle Scholar
  522. 522.
    Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5150–4.PubMedPubMedCentralGoogle Scholar
  523. 523.
    Dahdouh E, Gomez-Gil R, Sanz S, Gonzalez-Zorn B, Daoud Z, Mingorance J, et al. A novel mutation in pmrB mediates colistin resistance during therapy of Acinetobacter baumannii. Int J Antimicrob Agents. 2017;49(6):727–33.PubMedGoogle Scholar
  524. 524.
    Lean SS, Suhaili Z, Ismail S, Rahman NI, Othman N, Abdullah FH, et al. Prevalence and genetic characterization of carbapenem- and polymyxin-resistant Acinetobacter baumannii isolated from a tertiary hospital in Terengganu, Malaysia. ISRN Microbiol. 2014;2014:953417.PubMedPubMedCentralGoogle Scholar
  525. 525.
    Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009;53(9):3628–34.PubMedPubMedCentralGoogle Scholar
  526. 526.
    Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother. 2011;55(8):3743–51.PubMedPubMedCentralGoogle Scholar
  527. 527.
    Lesho E, Yoon EJ, McGann P, Snesrud E, Kwak Y, Milillo M, et al. Emergence of colistin-resistance in extremely drug-resistant Acinetobacter baumannii containing a novel pmrCAB operon during colistin therapy of wound infections. J Infect Dis. 2013;208(7):1142–51.PubMedGoogle Scholar
  528. 528.
    Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system. Antimicrob Agents Chemother. 2015;59(5):2780–4.PubMedPubMedCentralGoogle Scholar
  529. 529.
    Cheng YH, Lin TL, Pan YJ, Wang YP, Lin YT, Wang JT. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother. 2015;59(5):2909–13.PubMedPubMedCentralGoogle Scholar
  530. 530.
    Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother. 2015;59(1):536–43.PubMedGoogle Scholar
  531. 531.
    Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother. 2011;55(12):5761–9.PubMedPubMedCentralGoogle Scholar
  532. 532.
    Park YK, Choi JY, Shin D, Ko KS. Correlation between overexpression and amino acid substitution of the PmrAB locus and colistin resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 2011;37(6):525–30.PubMedGoogle Scholar
  533. 533.
    Poirel L, Jayol A, Bontron S, Villegas MV, Ozdamar M, Turkoglu S, et al. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(1):75–80.PubMedGoogle Scholar
  534. 534.
    Cannatelli A, D’Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother. 2013;57(11):5521–6.PubMedPubMedCentralGoogle Scholar
  535. 535.
    Cannatelli A, Giani T, D’Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother. 2014;58(10):5696–703.PubMedPubMedCentralGoogle Scholar
  536. 536.
    Olaitan AO, Diene SM, Kempf M, Berrazeg M, Bakour S, Gupta SK, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014;44(6):500–7.PubMedGoogle Scholar
  537. 537.
    Jayol A, Nordmann P, Desroches M, Decousser JW, Poirel L. Acquisition of broad-spectrum cephalosporin resistance leading to colistin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2016;60(5):3199–201.PubMedPubMedCentralGoogle Scholar
  538. 538.
    Cheng YH, Lin TL, Lin YT, Wang JT. Amino acid substitutions of CrrB responsible for resistance to colistin through CrrC in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2016;60(6):3709–16.PubMedPubMedCentralGoogle Scholar
  539. 539.
    Fernandez L, Gooderham WJ, Bains M, McPhee JB, Wiegand I, Hancock RE. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS. Antimicrob Agents Chemother. 2010;54(8):3372–82.PubMedPubMedCentralGoogle Scholar
  540. 540.
    Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204–15.PubMedPubMedCentralGoogle Scholar
  541. 541.
    Fernandez L, Jenssen H, Bains M, Wiegand I, Gooderham WJ, Hancock RE. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob Agents Chemother. 2012;56(12):6212–22.PubMedPubMedCentralGoogle Scholar
  542. 542.
    Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35.PubMedGoogle Scholar
  543. 543.
    Halaby T, Kucukkose E, Janssen AB, Rogers MR, Doorduijn DJ, van der Zanden AG, et al. Genomic characterization of colistin heteroresistance in Klebsiella pneumoniae during a nosocomial outbreak. Antimicrob Agents Chemother. 2016;60(11):6837–43.PubMedPubMedCentralGoogle Scholar
  544. 544.
    Bardet L, Baron S, Leangapichart T, Okdah L, Diene SM, Rolain JM. Deciphering heteroresistance to Colistin in a Klebsiella pneumoniae isolate from Marseille, France. Antimicrob Agents Chemother. 2017;61(6):e00356.PubMedPubMedCentralGoogle Scholar
  545. 545.
    Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50(9):2946–50.PubMedPubMedCentralGoogle Scholar
  546. 546.
    Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(6):3022–4.PubMedPubMedCentralGoogle Scholar
  547. 547.
    Bojkovic J, Richie DL, Six DA, Rath CM, Sawyer WS, Hu Q, et al. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol. 2015;198(4):731–41.PubMedGoogle Scholar
  548. 548.
    Richie DL, Takeoka KT, Bojkovic J, Metzger LE, Rath CM, Sawyer WS, et al. Toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for growth of Acinetobacter baumannii ATCC 19606. PLoS One. 2016;11(8):e0160918.PubMedPubMedCentralGoogle Scholar
  549. 549.
    Wei J-R, Richie DL, Mostafavi M, Metzger LE IV, Rath CM, Sawyer WS, Takeoka KT, Dean CR. LpxK is essential for growth of Acinetobacter baumannii ATCC 19606: relationship to toxic accumulation of lipid A pathway intermediates. mSPHERE. 2017;4(2).
  550. 550.
    Henry R, Vithanage N, Harrison P, Seemann T, Coutts S, Moffatt JH, et al. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine. Antimicrob Agents Chemother. 2012;56(1):59–69.PubMedPubMedCentralGoogle Scholar
  551. 551.
    Beceiro A, Moreno A, Fernandez N, Vallejo JA, Aranda J, Adler B, et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(1):518–26.PubMedPubMedCentralGoogle Scholar
  552. 552.
    Hood MI, Becker KW, Roux CM, Dunman PM, Skaar EP. genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun. 2013;81(2):542–51.PubMedPubMedCentralGoogle Scholar
  553. 553.
    Lean SS, Yeo CC, Suhaili Z, Thong KL. Comparative genomics of two ST 195 carbapenem-resistant Acinetobacter baumannii with different susceptibility to polymyxin revealed underlying resistance mechanism. Front Microbiol. 2015;6:1445.PubMedGoogle Scholar
  554. 554.
    Thi Khanh Nhu N, Riordan DW, Do Hoang Nhu T, Thanh DP, Thwaites G, Huong Lan NP, et al. The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications. Sci Rep. 2016;6:28291.PubMedPubMedCentralGoogle Scholar
  555. 555.
    Regenbogen B, Willmann M, Steglich M, Bunk B, Nubel U, Peter S, et al. Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture. Antimicrob Agents Chemother. 2017; 61(9):e00043–17.Google Scholar
  556. 556.
    Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.PubMedGoogle Scholar
  557. 557.
    Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 2016;21(9):30155.PubMedGoogle Scholar
  558. 558.
    Al-Tawfiq JA, Laxminarayan R, Mendelson M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int J Infect Dis. 2017;54:77–84.PubMedGoogle Scholar
  559. 559.
    McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, et al. Escherichia coli Harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60(7):4420–1.PubMedPubMedCentralGoogle Scholar
  560. 560.
    Di Pilato V, Arena F, Tascini C, Cannatelli A, Henrici De Angelis L, Fortunato S, et al. mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother. 2016;60(9):5612–5.PubMedPubMedCentralGoogle Scholar
  561. 561.
    Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveillance. 2016;21(27).
  562. 562.
    Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8(3):e00543.PubMedPubMedCentralGoogle Scholar
  563. 563.
    Liu YY, Chandler CE, Leung LM, McElheny CL, Mettus RT, Shanks RMQ, et al. Structural modification of lipopolysaccharide conferred by mcr-1 in Gram-negative ESKAPE Pathogens. Antimicrob Agents Chemother. 2017;61(6):e00580.PubMedPubMedCentralGoogle Scholar
  564. 564.
    Du H, Chen L, Tang Y-W, Kreiswirth BN. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect Dis. 2016;16(3):287–8.PubMedGoogle Scholar
  565. 565.
    Yao X, Doi Y, Zeng L, Lv L, Liu J-H. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis. 2016;16(3):288–9.PubMedGoogle Scholar
  566. 566.
    Lai CC, Chuang YC, Chen CC, Tang HJ. Coexistence of MCR-1 and NDM-9 in a clinical carbapenem-resistant Escherichia coli isolate. Int J Antimicrob Agents. 2017;49(4):517–8.PubMedGoogle Scholar
  567. 567.
    Mediavilla JR, Patrawalla A, Chen L, Chavda KD, Mathema B, Vinnard C, et al. Colistin- and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio. 2016;7(4):e01191.PubMedPubMedCentralGoogle Scholar
  568. 568.
    Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314(14):1479–87.PubMedGoogle Scholar
  569. 569.
    Castanheira M, Griffin MA, Deshpande LM, Mendes RE, Jones RN, Flamm RK. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY antimicrobial surveillance program in 2014 and 2015. Antimicrob Agents Chemother. 2016;60(9):5623–4.PubMedPubMedCentralGoogle Scholar
  570. 570.
    Caniaux I, van Belkum A, Zambardi G, Poirel L, Gros MF. MCR: modern colistin resistance. Eur J Clin Microbiol Infect Dis. 2017;36(3):415–20.PubMedGoogle Scholar
  571. 571.
    Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, et al. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog. 2016;12(11):e1005957.PubMedPubMedCentralGoogle Scholar
  572. 572.
    Sun J, Xu Y, Gao R, Lin J, Wei W, Srinivas S, et al. Deciphering MCR-2 colistin resistance. MBio. 2017;8(3):e00625.PubMedPubMedCentralGoogle Scholar
  573. 573.
    Ye H, Li Y, Li Z, Gao R, Zhang H, Wen R, et al. Diversified mcr-1-harbouring plasmid reservoirs confer resistance to colistin in human gut microbiota. MBio. 2016;7(2):e00177.PubMedPubMedCentralGoogle Scholar
  574. 574.
    Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, et al. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother. 2008;52(9):3229–36.PubMedPubMedCentralGoogle Scholar
  575. 575.
    Vaara M, Siikanen O, Apajalahti J, Fox J, Frimodt-Moller N, He H, et al. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother. 2010;54(8):3341–6.PubMedPubMedCentralGoogle Scholar
  576. 576.
    Zabawa TP, Pucci MJ, Parr TR Jr, Lister T. Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol. 2016;33:7–12.PubMedGoogle Scholar
  577. 577.
    Quale J, Shah N, Kelly P, Babu E, Backer M, Rosas-Garcia G, et al. Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist. 2012;18(2):132–6.PubMedGoogle Scholar
  578. 578.
    Magee TV, Brown MF, Starr JT, Ackley DC, Abramite JA, Aubrecht J, et al. Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J Med Chem. 2013;56(12):5079–93.PubMedGoogle Scholar
  579. 579.
    Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J. Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem Biol. 2014;9(5):1172–7.PubMedPubMedCentralGoogle Scholar
  580. 580.
    Lomovskaya O, Rubio-Aparicio D, Nelson K, Roberts KD, Thompson PE, Nation RL, Velkov T, Li J, Hecker SJ, Griffith DC, Dudley MN. In vitro activity of Faddi-287, a representative of a novel series of polymyxins (Pm) with reduced nephrotoxic potential. Abstracts of Microbe 2016. Boston; 2016; Saturday-495.Google Scholar
  581. 581.
    Brown P, Dawson MJ. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot (Tokyo). 2017;70(4):386–94.PubMedGoogle Scholar
  582. 582.
    Velkov T, Roberts KD, Li J. Rediscovering the octapeptins. Nat Prod Rep. 2017;34(3):295–309.PubMedPubMedCentralGoogle Scholar
  583. 583.
    Becker B, Butler MS, Hansford KA, Gallardo-Godoy A, Elliott AG, Huang JX, et al. Synthesis of octapeptin C4 and biological profiling against NDM-1 and polymyxin-resistant bacteria. Bioorg Med Chem Lett. 2017;27(11):2407–9.PubMedPubMedCentralGoogle Scholar
  584. 584.
    Han ML, Shen HH, Hansford KA, Schneider EK, Sivanesan S, Roberts KD, et al. Investigating the interaction of octapeptin A3 with model bacterial membranes. ACS Infect Dis. 2017;3(8):606–19.PubMedPubMedCentralGoogle Scholar
  585. 585.
    Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI, Bonomo RA. Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. mBio. 2017;8(5):e01172–17.Google Scholar
  586. 586.
    Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P. Meningitis bacterium is viable without endotoxin. Nature. 1998;392(6675):449–449.PubMedGoogle Scholar
  587. 587.
    Peng D, Hong W, Choudhury BP, Carlson, RW, Gu XX. Moraxella catarrhalis Bacterium without Endotoxin, a Potential Vaccine Candidate. Infection and Immunity. 2005;73(11):7569–7577.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charles R. Dean
    • 1
    Email author
  • Gianfranco De Pascale
    • 1
  • Bret Benton
    • 1
  1. 1.Infectious DiseasesNovartis Institutes for BioMedical ResearchEmeryvilleUSA

Personalised recommendations