Epidemiology of Bacterial Resistance

  • Patricia A. BradfordEmail author
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


Bacterial pathogens have developed resistance to antibacterial agents through mutation and acquisition of a panoply of resistance determinants. Outbreaks of resistant strains have caused significant morbidity and mortality in the affected patient populations when they occur. A variety of typing methods are used to track and monitor resistance, including newer molecular techniques such as whole genome sequencing. Resistance has traditionally been centered among hospitalized patients; however, resistant pathogens are being isolated in the community setting with increasing frequency. Some resistant strains have developed into epidemic clones that have spread worldwide, but the factors involved in this dissemination remain undefined.



I thank Charles R. Dean for assistance with information gathering.


  1. 1.
    CDC. Antibiotic resistance threats in the United States, 2013. 2014. Available from:
  2. 2.
    Woodford N. Glycopeptide-resistant enterococci: a decade of experience. J Med Microbiol. 1998;47(10):849–62.PubMedGoogle Scholar
  3. 3.
    Oppenheim BA. The changing pattern of infection in neutropenic patients. J Antimicrob Chemother. 1998;41 Suppl D:7–11.PubMedGoogle Scholar
  4. 4.
    Gomez J, Simarro E, Banos V, Requena L, Ruiz J, Garcia F, et al. Six-year prospective study of risk and prognostic factors in patients with nosocomial sepsis caused by Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 1999;18(5):358–61.PubMedGoogle Scholar
  5. 5.
    Elting LS, Khardori N, Bodey GP, Fainstein V. Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors. Infect Control Hosp Epidemiol. 1990;11(3):134–8.PubMedGoogle Scholar
  6. 6.
    Miller JH. Mutational specificity in Bacteria. Annu Rev Genet. 1983;17(1):215–38.PubMedGoogle Scholar
  7. 7.
    Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Podglajen I, Breuil J, Collatz E. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol. 1994;12(1):105–14.PubMedGoogle Scholar
  9. 9.
    Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol. 2002;3(2):77–98.PubMedGoogle Scholar
  10. 10.
    Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003;36(Suppl 1):S11–23.PubMedGoogle Scholar
  11. 11.
    Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs. 1999;58(Suppl 2):11–8.PubMedGoogle Scholar
  12. 12.
    Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, et al. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2001;45(7):2154–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;358(9277):207–8.PubMedGoogle Scholar
  14. 14.
    Hall RM. Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci. 2012;1267:71–8.PubMedGoogle Scholar
  15. 15.
    Toulouse JL, Edens TJ, Alejaldre L, Manges AR, Pelletier JN. Integron-associated DfrB4, a previously uncharacterized member of the trimethoprim-resistant dihydrofolate reductase B family, is a clinically identified emergent source of antibiotic resistance. Antimicrob Agents Chemother. 2017;61(5)Google Scholar
  16. 16.
    Lee JJ, Kim M-N, Park KS, Lee JH, Karim AM, Park M, et al. Complex class 1 integron carrying qnrB62 and blaVIM-2 in a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother. 2016;60(11):6937–40.PubMedPubMedCentralGoogle Scholar
  17. 17.
    KDO P, Campos JC, SCF S, Lezirovitz K, Seco BM, MDO P, et al. fosI is a new integron-associated gene cassette encoding reduced susceptibility to fosfomycin. Antimicrob Agents Chemother. 2016;60(1):686–8.Google Scholar
  18. 18.
    Livermore DM. β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–84.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002;46(1):1–11.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother. 1997;41(3):563–9.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Oliver A, Perez-Diaz JC, Coque TM, Baquero F, Canton R. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing β-lactamase (CTX-M-10) isolated in Spain. Antimicrob Agents Chemother. 2001;45(2):616–20.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6′)-Ih. J Antimicrob Chemother. 2016;71(3):601–6.PubMedGoogle Scholar
  23. 23.
    Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, et al. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. MBio. 2014;5(5):e01972-14.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Spratt BG. Resistance to antibiotics mediated by target alterations. Science. 1994;264(5157):388–93.PubMedGoogle Scholar
  25. 25.
    Appelbaum PC. Resistance among Streptococcus pneumoniae: implications for drug selection. Clin Infect Dis. 2002;34(12):1613–20.PubMedGoogle Scholar
  26. 26.
    Stefani S, Agodi A. Molecular epidemiology of antibiotic resistance. Int J Antimicrob Agents. 2000;13(3):143–53.PubMedGoogle Scholar
  27. 27.
    Musser JM. Molecular population genetic analysis of emerged bacterial pathogens: selected insights. Emerg Infect Dis. 1996;2(1):1–17.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Struelens MJ. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect. 1996;2(1):2–11.PubMedGoogle Scholar
  29. 29.
    Tenover FC, Arbeit R, Archer G, Biddle J, Byrne S, Goering R, et al. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994;32(2):407–15.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dijkshoorn L, Aucken HM, Gerner-Smidt P, Kaufmann ME, Ursing J, Pitt TL. Correlation of typing methods for Acinetobacter isolates from hospital outbreaks. J Clin Microbiol. 1993;31(3):702–5.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Struelens MJ, Rost F, Deplano A, Maas A, Schwam V, Serruys E, et al. Pseudomonas aeruginosa and Enterobacteriaceae bacteremia after biliary endoscopy: an outbreak investigation using DNA macrorestriction analysis. Am J Med. 1993;95(5):489–98.PubMedGoogle Scholar
  32. 32.
    Wenzler E, Goff DA, Humphries R, Goldstein EJC. Anticipating the unpredictable: a review of antimicrobial stewardship and Acinetobacter infections. Infect Dis Ther. 2017;6(2):149–72.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gerner-Smidt P, Hyytiä-Trees E, Rota PA. Molecular epidemiology. In: Versalovic J, editor. Manual of clinical microbiology, vol. 1. 10th ed. Washington, D.C.: American Society for Microbiology Press; 2011.Google Scholar
  34. 34.
    Yoshida C, Franklin K, Konczy P, McQuiston JR, Fields PI, Nash JH, et al. Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. J Microbiol Methods. 2007;70(2):261–71.PubMedGoogle Scholar
  35. 35.
    Fitzgerald C, Collins M, van Duyne S, Mikoleit M, Brown T, Fields P. Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol. 2007;45(10):3323–34.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Neal S, Beall B, Ekelund K, Henriques-Normark B, Jasir A, Johnson D, et al. International quality assurance study for characterization of Streptococcus pyogenes. J Clin Microbiol. 2007;45(4):1175–9.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Facklam RF, Martin DR, Lovgren M, Johnson DR, Efstratiou A, Thompson TA, et al. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124. Clin Infect Dis. 2002;34(1):28–38.PubMedGoogle Scholar
  38. 38.
    Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol. 2006;44(1):124–31.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wiener J, Quinn JP, Bradford PA, Goering RV, Nathan C, Bush K, et al. Multiple antibiotic-resistant Klebsiella and Escherichia coli in nursing homes. JAMA. 1999;281(6):517–23.PubMedGoogle Scholar
  41. 41.
    Mayer LW. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin Microbiol Rev. 1988;1(2):228–43.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Grimont F, Grimont PA. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol. 1986;137b(2):165–75.PubMedGoogle Scholar
  43. 43.
    Blumberg HM, Rimland D, Kiehlbauch JA, Terry PM, Wachsmuth IK. Epidemiologic typing of Staphylococcus aureus by DNA restriction fragment length polymorphisms of rRNA genes: elucidation of the clonal nature of a group of bacteriophage-nontypeable, ciprofloxacin-resistant, methicillin-susceptible S. aureus isolates. J Clin Microbiol. 1992;30(2):362–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Popovic T, Bopp CA, Olsvik O, Kiehlbauch JA. Ribotyping in molecular epidemiology. In: Persing DH, editor. Diagnostic molecular microbiology, principles and applications. Washington, D.C.: American Society for Microbiology; 1993. p. 573–83.Google Scholar
  45. 45.
    Bingen EH, Denamur E, Elion J. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin Microbiol Rev. 1994;7(3):311–27.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Jones CH, Tuckman M, Keeney D, Ruzin A, Bradford PA. Characterization and sequence analysis of extended-spectrum-β-lactamase-encoding genes from Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates collected during tigecycline phase 3 clinical trials. Antimicrob Agents Chemother. 2009;53(2):465–75.PubMedGoogle Scholar
  47. 47.
    Adler A, Miller-Roll T, Bradenstein R, Block C, Mendelson B, Parizade M, et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel: the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn Microbiol Infect Dis. 2015;83(1):21–4.PubMedGoogle Scholar
  48. 48.
    McAleese F, Murphy E, Babinchak T, Singh G, Said-Salim B, Kreiswirth B, et al. Use of ribotyping to retrospectively identify methicillin-resistant Staphylococcus aureus isolates from phase 3 clinical trials for tigecycline that are genotypically related to community-associated isolates. Antimicrob Agents Chemother. 2005;49(11):4521–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bouchet V, Huot H, Goldstein R. Molecular genetic basis of ribotyping. Clin Microbiol Rev. 2008;21(2):262–73.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.PubMedPubMedCentralGoogle Scholar
  51. 51.
    van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994;7(2):174–84.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18(24):7213–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–5.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Bustamante-Rengifo JA, Matta AJ, Pazos AJ, Bravo LE. Effect of treatment failure on the CagA EPIYA motif in Helicobacter pylori strains from Colombian subjects. World J Gastroenterol. 2017;23(11):1980–9.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Miao J, Chen L, Wang J, Wang W, Chen D, Li L, et al. Evaluation and application of molecular genotyping on nosocomial pathogen-methicillin-resistant Staphylococcus aureus isolates in Guangzhou representative of Southern China. Microb Pathog. 2017;107:397–403.PubMedGoogle Scholar
  56. 56.
    Mobasherizadeh S, Shojaei H, Havaei SA, Mostafavizadeh K, Davoodabadi F, Khorvash F, et al. Application of the random amplified polymorphic DNA (RAPD) fingerprinting to analyze genetic variation in community associated-methicillin resistant Staphylococcus aureus (CA-MRSA) isolates in Iran. Global J Health Sci. 2016;8(8):53822.Google Scholar
  57. 57.
    Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37(3):1015–26.PubMedGoogle Scholar
  58. 58.
    Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823–31.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, et al. Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol. 2005;43(1):199–207.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ahmadi A, Salimizand H. Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted blaOXA-51-like by ISAba19. Int J Antimicrob Agents. 2017;50(1):119–22.PubMedGoogle Scholar
  61. 61.
    Zarfel G, Lipp M, Gurtl E, Folli B, Baumert R, Kittinger C. Troubled water under the bridge: screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci Total Environ. 2017;593-594:399–405.PubMedGoogle Scholar
  62. 62.
    van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998;62(2):275–293.Google Scholar
  63. 63.
    Hoffmaster AR, Fitzgerald CC, Ribot E, Mayer LW, Popovic T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis. 2002;8(10):1111–6.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Jagielski T, Minias A, van Ingen J, Rastogi N, Brzostek A, Żaczek A, et al. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin Microbiol Rev. 2016;29(2):239–90.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Armas F, Camperio C, Coltella L, Selvaggini S, Boniotti MB, Pacciarini ML, et al. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis. J Med Microbiol. 2017;Google Scholar
  66. 66.
    Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance. Eur J Clin Microbiol Infect Dis. 2017;36(7):1279–86.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37(1):67–75.PubMedGoogle Scholar
  68. 68.
    Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001;7(3):382–9.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Zheng B, Dai Y, Liu Y, Shi W, Dai E, Han Y, et al. Molecular epidemiology and risk factors of Carbapenem-resistant Klebsiella pneumoniae infections in Eastern China. Front Microbiol. 2017;8:1061.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Adler A, Glick R, Lifshitz Z, Carmeli Y. Does Acinetobacter baumannii serve as a source for blaNDM dissemination into Enterobacteriaceae in hospitalized patients? Microb Drug Resist. 2017;Google Scholar
  71. 71.
    Sit PS, Teh CS, Idris N, Sam IC, Syed Omar SF, Sulaiman H, et al. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. BMC Infect Dis. 2017;17(1):274.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186(5):1518–30.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, et al. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Euro Surveill. 2017, 22;(23):pii: 30544.Google Scholar
  74. 74.
    Lytsy B, Engstrand L, Gustafsson A, Kaden R. Time to review the gold standard for genotyping vancomycin-resistant enterococci in epidemiology: comparing whole-genome sequencing with PFGE and MLST in three suspected outbreaks in Sweden during 2013-2015. Infect Genet Evol. 2017;54:74–80.PubMedGoogle Scholar
  75. 75.
    Hall TA, Sampath R, Blyn LB, Ranken R, Ivy C, Melton R, et al. Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR coupled to electrospray ionization-mass spectrometry. J Clin Microbiol. 2009;47(6):1733–41.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev. 2014;27(3):543–74.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35(4):316–21.PubMedGoogle Scholar
  78. 78.
    Peirano G, Bradford PA, Kazmierczak KM, Badal RE, Hackel M, Hoban DJ, et al. Global incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis. 2014;20(11):1928–31.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother. 2014;58(9):4997–5004.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–91.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Peirano G, Bradford PA, Kazmierczak KM, Chen L, Kreiswirth BN, Pitout JD. Importance of clonal complex 258 and IncFK2-like plasmids among a global collection of Klebsiella pneumoniae with blaKPC. Antimicrob Agents Chemother. 2017;61(4)Google Scholar
  82. 82.
    Baraniak A, Izdebski R, Zabicka D, Bojarska K, Gorska S, Literacka E, et al. Multiregional dissemination of KPC-producing Klebsiella pneumoniae ST258/ST512 genotypes in Poland, 2010-14. J Antimicrob Chemother. 2017;72(6):1610–6.PubMedGoogle Scholar
  83. 83.
    Kanamori H, Parobek CM, Juliano JJ, van Duin D, Cairns BA, Weber DJ, et al. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center. Antimicrob Agents Chemother. 2017;61(2):pii: e01516-16.Google Scholar
  84. 84.
    Ruppe E, Olearo F, Pires D, Baud D, Renzi G, Cherkaoui A, et al. Clonal or not clonal? Investigating hospital outbreaks of KPC-producing Klebsiella pneumoniae with whole-genome sequencing. Clin Microbiol Infect. 2017;23(7):470–5.PubMedGoogle Scholar
  85. 85.
    Deng X, den Bakker HC, Hendriksen RS. Genomic epidemiology: whole-genome-sequencing-powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu Rev Food Sci Technol. 2016;7:353–74.PubMedGoogle Scholar
  86. 86.
    Humphries RM, Yang S, Kim S, Muthusamy VR, Russell D, Trout AM, et al. Duodenoscope-related outbreak of a carbapenem resistant Klebsiella pneumoniae identified using advanced molecular diagnostics. Clin Infect Dis. 2017;65(7):1159–66.PubMedGoogle Scholar
  87. 87.
    Archibald L, Phillips L, Monnet D, JE MG Jr, Tenover F, Gaynes R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis. 1997;24(2):211–5.PubMedGoogle Scholar
  88. 88.
    Hetem DJ, Derde LP, Empel J, Mroczkowska A, Orczykowska-Kotyna M, Kozinska A, et al. Molecular epidemiology of MRSA in 13 ICUs from eight European countries. J Antimicrob Chemother. 2016;71(1):45–52.PubMedGoogle Scholar
  89. 89.
    Sader HS, Mendes RE, Streit JM, Flamm RK. Antimicrobial susceptibility trends among Staphylococcus aureus from United States hospitals: results from 7 years of the Ceftaroline (AWARE) Surveillance Program (2010-2016). Antimicrob Agents Chemother. 2017;61(9):pii: e01043-17.Google Scholar
  90. 90.
    Adam HJ, Baxter MR, Davidson RJ, Rubinstein E, Fanella S, Karlowsky JA, et al. Comparison of pathogens and their antimicrobial resistance patterns in paediatric, adult and elderly patients in Canadian hospitals. J Antimicrob Chemother. 2013;68(Suppl 1):i31–7.PubMedGoogle Scholar
  91. 91.
    ECDC. Surveillance atlas of infectious disease 2017. Available from:
  92. 92.
    Lee NY, Song JH, Kim S, Peck KR, Ahn KM, Lee SI, et al. Carriage of antibiotic-resistant pneumococci among Asian children: a multinational surveillance by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). Clin Infect Dis. 2001;32(10):1463–9.PubMedGoogle Scholar
  93. 93.
    Di Martino P, Livrelli V, Sirot D, Joly B, Darfeuille-Michaud A. A new fimbrial antigen harbored by CAZ-5/SHV-4-producing Klebsiella pneumoniae strains involved in nosocomial infections. Infect Immun 1996;64(6):2266–2273.Google Scholar
  94. 94.
    Jevons MP. “Celbenin” – resistant staphylococci. Br Med J. 1961;1(5219):124–5.PubMedCentralGoogle Scholar
  95. 95.
    Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Kosowska-Shick K, McGhee PL, Appelbaum PC. Affinity of ceftaroline and other β-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother. 2010;54(5):1670–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8(6):747–63.PubMedGoogle Scholar
  98. 98.
    Zhang K, McClure J-A, Elsayed S, Conly JM. Novel Staphylococcal Cassette Chromosome mec type, tentatively designated type VIII, harboring Class A mec and type 4 ccr gene complexes in a Canadian epidemicxtrain of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(2):531–40.PubMedGoogle Scholar
  99. 99.
    Elements IWGCSCC. Classification of Staphylococcal Cassette Chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53(12):4961–7.Google Scholar
  100. 100.
    Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis. 2001;7(2):178–82.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Albrich WC, Harbarth S. Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis. 2008;8(5):289–301.PubMedGoogle Scholar
  102. 102.
    Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. Methicillin-resistant Staphylococcus aureus in two child care centers. J Infect Dis. 1998;178(2):577–80.PubMedGoogle Scholar
  103. 103.
    Katayama Y, Robinson DA, Enright MC, Chambers HF. Genetic background affects stability of mecA in Staphylococcus aureus. J Clin Microbiol. 2005;43(5):2380–3.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22(1):42–7.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Musser JM, Kapur V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol. 1992;30(8):2058–63.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Reacher MH, Shah A, Livermore DM, Wale MCJ, Graham C, Johnson AP, et al. Bacteraemia and antibiotic resistance of its pathogens reported in England and Wales between 1990 and 1998: trend analysis. BMJ. 2000;320(7229):213–6.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Johnson AP, Aucken HM, Cavendish S, Ganner M, Wale MCJ, Warner M, et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother. 2001;48(1):143–4.PubMedGoogle Scholar
  108. 108.
    Nakamura A, Miyake K, Misawa S, Kuno Y, Horii T, Hori S, et al. Association between antimicrobial consumption and clinical isolates of methicillin-resistant Staphylococcus aureus: a 14-year study. J Infect Chemother. 2012;18(1):90–5.PubMedGoogle Scholar
  109. 109.
    Ravensbergen SJ, Berends M, Stienstra Y, Ott A. High prevalence of MRSA and ESBL among asylum seekers in the Netherlands. PLoS One. 2017;12(4):e0176481.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Saravolatz LD, Markowitz N, Arking L, Pohlod D, Fisher E. Methicillin-resistant Staphylococcus aureus. Epidemiologic observations during a community-acquired outbreak. Ann Intern Med. 1982;96(1):11–6.PubMedGoogle Scholar
  111. 111.
    CDC. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus – Minnesota and North Dakota, 1997-1999. MMWR Morb Mortal Wkly Rep 1999;48(32):707–710.Google Scholar
  112. 112.
    Ugarte Torres A, Chu A, Read R, MacDonald J, Gregson D, Louie T, et al. The epidemiology of Staphylococcus aureus carriage in patients attending inner city sexually transmitted infections and community clinics in Calgary, Canada. PLoS One. 2017;12(5):e0178557.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Akpaka PE, Roberts R, Monecke S. Molecular characterization of antimicrobial resistance genes against Staphylococcus aureus isolates from Trinidad and Tobago. J Infect Public Health. 2017;10(3):316–23.PubMedGoogle Scholar
  114. 114.
    Zuma AV, Lima DF, Assef AP, Marques EA, Leao RS. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from blood in Rio de Janeiro displaying susceptibility profiles to non-beta-lactam antibiotics. Braz J Microbiol. 2017;48(2):237–41.PubMedGoogle Scholar
  115. 115.
    Lynch JP, Zhanel GG. Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care. 2009;30(2):189–209.Google Scholar
  116. 116.
    Hansman D, Bullen M. A resistant pneumococcus. Lancet. 1967;290(7509):264–5.Google Scholar
  117. 117.
    Michel J, Dickman D, Greenberg Z, Bergner-Rabinowitz S. Serotype distribution of penicillin-resistant pneumococci and their susceptibilities to seven antimicrobial agents. Antimicrob Agents Chemother. 1983;23(3):397–401.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354(14):1455–63.Google Scholar
  119. 119.
    Jabes D, Nachman S, Tomasz A. Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. J Infect Dis. 1989;159(1):16–25.PubMedGoogle Scholar
  120. 120.
    Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993;9(3):635–43.PubMedGoogle Scholar
  121. 121.
    Sibold C, Wang J, Henrichsen J, Hakenbeck R. Genetic relationships of penicillin-susceptible and -resistant Streptococcus pneumoniae strains isolated on different continents. Infect Immun. 1992;60(10):4119–26.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Kristinsson KG, Hjalmarsdottir MA, Steingrimsson O. Increasing penicillin resistance in pneumococci in Iceland. Lancet. 1992;339(8809):1606–7.PubMedGoogle Scholar
  123. 123.
    Soares S, Kristinsson KG, Musser JM, Tomasz A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J Infect Dis. 1993;168(1):158–63.PubMedGoogle Scholar
  124. 124.
    Hjalmarsdottir MA, Kristinsson KG. Epidemiology of penicillin-non-susceptible pneumococci in Iceland, 1995-2010. J Antimicrob Chemother. 2014;69(4):940–6.PubMedGoogle Scholar
  125. 125.
    Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev. 2016;29(3):525–52.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Prevention CfDCa. Active Bacterial Core Surveillance (ABCs) Report Emerging Infections Program Network Streptococcus pneumoniae, 2015. Available from:
  127. 127.
    Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988;319(3):157–61.PubMedGoogle Scholar
  128. 128.
    Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, et al. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1989;33(9):1588–91.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Acar J, Casewell M, Freeman J, Friis C, Goossens H. Avoparcin and virginiamycin as animal growth promoters: a plea for science in decision-making. Clin Microbiol Infect. 2000;6(9):477–82.PubMedGoogle Scholar
  130. 130.
    Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin. Antimicrob Agents Chemother. 1998;42(5):1303–4.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Frieden TR, Munsiff SS, Low DE, Willey BM, Williams G, Faur Y, et al. Emergence of vancomycin-resistant enterococci in New York City. Lancet. 1993;342(8863):76–9.PubMedGoogle Scholar
  132. 132.
    Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007;58(2):163–70.PubMedGoogle Scholar
  133. 133.
    O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217–30.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Baden LR, Critchley IA, Sahm DF, So W, Gedde M, Porter S, et al. Molecular characterization of vancomycin-resistant Enterococci repopulating the gastrointestinal tract following treatment with a novel glycolipodepsipeptide, ramoplanin. J Clin Microbiol. 2002;40(4):1160–3.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Snyder GM, Thom KA, Furuno JP, Perencevich EN, Roghmann MC, Strauss SM, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583–9.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Ghanem G, Hachem R, Jiang Y, Chemaly RF, Raad I. Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28(9):1054–9.PubMedGoogle Scholar
  137. 137.
    Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996–1011.Google Scholar
  138. 138.
    Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1):1–14.PubMedGoogle Scholar
  139. 139.
    Zhanel GG, Adam HJ, Baxter MR, Fuller J, Nichol KA, Denisuik AJ, et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother. 2013;68(Suppl 1):i7–22.PubMedGoogle Scholar
  140. 140.
    ECDC. European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2017.Google Scholar
  141. 141.
    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin Infect Dis. 2004;39(1):55–60.PubMedGoogle Scholar
  143. 143.
    Navon-Venezia S, Leavitt A, Schwaber MJ, Rasheed JK, Srinivasan A, Patel JB, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother. 2009;53(2):818–20.PubMedGoogle Scholar
  144. 144.
    Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BLM, Bouchillon SK, et al. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and Aztreonam-avibactam. Antimicrob Agents Chemother. 2016;60(8):4490–500.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Y-y H, D-x G, J-c C, H-w Z, Zhang R. Emergence of KPC-2-producing Pseudomonas aeruginosa sequence type 463 isolates in Hangzhou, China. Antimicrob Agents Chemother. 2015;59(5):2914–7.Google Scholar
  146. 146.
    Liang Y, Yin X, Zeng L, Chen S. Clonal replacement of epidemic KPC-producing Klebsiella pneumoniae in a hospital in China. BMC Infect Dis. 2017;17(1):363.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn Microbiol Infect Dis. 2017;87(4):343–8.PubMedGoogle Scholar
  148. 148.
    Vubil D, Figueiredo R, Reis T, Canha C, Boaventura L, GJ DAS. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol Infect. 2017;145(3):595–9.PubMedGoogle Scholar
  149. 149.
    Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148):148ra16-ra16.Google Scholar
  150. 150.
    Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Ghitan M, et al. Rise and fall of KPC-producing Klebsiella pneumoniae in New York City. J Antimicrob Chemother. 2016;71(10):2945–8.PubMedGoogle Scholar
  151. 151.
    Walther-Rasmussen J, Høiby N. Class A carbapenemases. J Antimicrob Chemother. 2007;60(3):470–82.PubMedGoogle Scholar
  152. 152.
    Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, et al. Discovery of a cyclic boronic acid beta-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J Med Chem. 2015;58(9):3682–92.PubMedGoogle Scholar
  153. 153.
    Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–96.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59(10):5873–84.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Chen L, Chavda KD, DeLeo FR, Bryant KA, Jacobs MR, Bonomo RA, et al. Genome sequence of a Klebsiella pneumoniae sequence type 258 isolate with prophage-encoded K. pneumoniae carbapenemase. Genome Announc. 2015;3(3)Google Scholar
  156. 156.
    Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.PubMedGoogle Scholar
  158. 158.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–78.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, Barrios H, Villarreal-Treviño L, Rodríguez-Noriega E, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One. 2017;12(6):e0179651.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM, Renders NHM, et al. An outbreak of NDM-1 producing Klebsiella pneumoniae in a Dutch hospital with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated healthcare centers. J Clin Microbiol. 2017;Google Scholar
  162. 162.
    Yu J, Wang Y, Chen Z, Zhu X, Tian L, Li L, et al. Outbreak of nosocomial NDM-1-producing Klebsiella pneumoniae ST1419 in a neonatal unit. J Global Antimicrobial Resist. 2017;8:135–9.Google Scholar
  163. 163.
    Lin J-N, Chang L-L, Lai C-H, Huang Y-H, Chen W-F, Yang C-H, et al. High prevalence of fluoroquinolone-nonsusceptible Streptococcus pyogenes emm12 in Taiwan. Diagn Microbiol Infect Dis. 2015;83(2):187–92.PubMedGoogle Scholar
  164. 164.
    McCurdy SP, Jones RN, Mendes RE, Puttagunta S, Dunne MW. In vitro activity of Dalbavancin against drug-resistant Staphylococcus aureus isolates from a global surveillance program. Antimicrob Agents Chemother. 2015;59(8):5007–9.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–301.PubMedGoogle Scholar
  166. 166.
    Bidell MR, Palchak M, Mohr J, Lodise TP. Fluoroquinolone and third-generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to Escherichia coli: do rates vary by hospital characteristics and geographic region? Antimicrob Agents Chemother. 2016;60(5):3170–3.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–89.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Wu JJ, Ko WC, Wu HM, Yan JJ. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital, 1999-2005. J Antimicrob Chemother. 2008;61(6):1234–9.PubMedGoogle Scholar
  169. 169.
    Strahilevitz J, Engelstein D, Adler A, Temper V, Moses AE, Block C, et al. Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 to 2005. Antimicrob Agents Chemother. 2007;51(8):3001–3.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Castanheira M, Costello SE, Jones RN, Mendes RE, editors. Prevalence of aminoglycoside resistance genes among contemporary Gram-negative resistant isolates collected worldwide. 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2015 April 25–28; Copenhagen.Google Scholar
  171. 171.
    Miro E, Grunbaum F, Gomez L, Rivera A, Mirelis B, Coll P, et al. Characterization of aminoglycoside-modifying enzymes in Enterobacteriaceae clinical strains and characterization of the plasmids implicated in their diffusion. Microb Drug Resist. 2013;19(2):94–9.PubMedGoogle Scholar
  172. 172.
    Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on Plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443–51.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Bell J, Andersson P, Jones RN, Turnidge J, editors. 16S rRNA methylase containing Enterobacteriaceae in the SENTRY Asia-Pacific region frequently harbour plasmid-mediated quinolone resistance and CTX-M types. European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); 2010 April 10–13; Vienna.Google Scholar
  174. 174.
    Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133–48.PubMedGoogle Scholar
  175. 175.
    Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71(4):442–5.PubMedGoogle Scholar
  176. 176.
    Poirel L, Savov E, Nazli A, Trifonova A, Todorova I, Gergova I, et al. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob Agents Chemother. 2014;58(4):2472–4.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Biswas S, Brunel J-M, Dubus J-C, Reynaud-Gaubert M, Rolain J-M. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti-Infect Ther. 2012;10(8):917–34.PubMedGoogle Scholar
  178. 178.
    Bradford PA, Kazmierczak KM, Biedenbach DJ, Wise MG, Hackel M, Sahm DF. Correlation of β-lactamase production and Colistin resistance among Enterobacteriaceae isolates from a global surveillance program. Antimicrob Agents Chemother. 2016;60(3):1385–92.PubMedCentralGoogle Scholar
  179. 179.
    Ah Y-M, Kim A-J, Lee J-Y. Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents. 2014;44(1):8–15.PubMedGoogle Scholar
  180. 180.
    Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.PubMedGoogle Scholar
  181. 181.
    Cui M, Zhang J, Gu Z, Li R, EW-c C, Yan M, et al. Prevalence and molecular characterization of mcr-1-positive Salmonella strains recovered from clinical specimens in China. Antimicrob Agents Chemother. 2017;61(5)Google Scholar
  182. 182.
    Huang TD, Bogaerts P, Berhin C, Hoebeke M, Bauraing C, Glupczynski Y. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015. Euro Surveill. 2017;22(19).Google Scholar
  183. 183.
    Mohsin J, Pal T, Petersen JE, Darwish D, Ghazawi A, Ashraf T, et al. Plasmid-mediated Colistin resistance gene mcr-1 in an Escherichia coli ST10 bloodstream isolate in the Sultanate of Oman. Microb Drug Resist. 2017;Google Scholar
  184. 184.
    Newton-Foot M, Snyman Y, Maloba MRB, Whitelaw AC. Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrob Resist Infect Control. 2017;6:78.PubMedPubMedCentralGoogle Scholar
  185. 185.
    McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, et al. Escherichia coli Harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrob Agents Chemother. 2016;60(7):4420–1.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Castanheira M, Griffin MA, Deshpande LM, Mendes RE, Jones RN, Flamm RK. Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY antimicrobial surveillance program in 2014 and 2015. Antimicrob Agents Chemother. 2016;60(9):5623–4.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Terveer EM, Nijhuis RHT, Crobach MJT, Knetsch CW, Veldkamp KE, Gooskens J, et al. Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS One. 2017;12(6):e0178598.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Chiou C-S, Chen Y-T, Wang Y-W, Liu Y-Y, Kuo H-C, Tu Y-H, et al. Dissemination of mcr-1-carrying plasmids among Colistin-resistant Salmonella strains from humans and food-producing animals in Taiwan. Antimicrob Agents Chemother. 2017;61(7)Google Scholar
  189. 189.
    El Garch F, Sauget M, Hocquet D, LeChaudee D, Woehrle F, Bertrand X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin Microbiol Infect 2017;23(1):51.e1–51.e4.Google Scholar
  190. 190.
    Roschanski N, Falgenhauer L, Grobbel M, Guenther S, Kreienbrock L, Imirzalioglu C, et al. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011-2012. Int J Antimicrob Agents. 2017;50(2):266–71.PubMedGoogle Scholar
  191. 191.
    Zhou H-W, Zhang T, Ma J-H, Fang Y, Wang H-Y, Huang Z-X, et al. Occurrence of plasmid- and chromosome-carried mcr-1 in waterborne Enterobacteriaceae in China. Antimicrob Agents Chemother. 2017;61(8)Google Scholar
  192. 192.
    Hembach N, Schmid F, Alexander J, Hiller C, Rogall ET, Schwartz T. Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front Microbiol. 2017;8:1282.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Ovejero CM, Delgado-Blas JF, Calero-Caceres W, Muniesa M, Gonzalez-Zorn B. Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. J Antimicrob Chemother. 2017;72(4):1050–3.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017;64(10):1435–44.PubMedGoogle Scholar
  195. 195.
    Hashida K, Shiomori T, Hohchi N, Ohkubo J, Ohbuchi T, Mori T, et al. Nasopharyngeal Streptococcus pneumoniae carriage in Japanese children attending day-care centers. Int J Pediatr Otorhinolaryngol. 2011;75(5):664–9.PubMedGoogle Scholar
  196. 196.
    Dueger EL, Asturias EJ, Matheu J, Gordillo R, Torres O, Halsey N. Increasing penicillin and trimethoprim-sulfamethoxazole resistance in nasopharyngeal Streptococcus pneumoniae isolates from Guatemalan children, 2001-2006. Int J Infect Dis. 2008;12(3):289–97.PubMedGoogle Scholar
  197. 197.
    Braga EDV, Aguiar-Alves F, de Freitas MFN, de e Silva MO, Correa TV, Snyder RE, et al. High prevalence of Staphylococcus aureus and methicillin-resistant S. aureus colonization among healthy children attending public daycare centers in informal settlements in a large urban center in Brazil. BMC Infect Dis. 2014;14Google Scholar
  198. 198.
    Rasmussen BA, Bradford PA, Quinn JP, Wiener J, Weinstein RA, Bush K. Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 β-lactamases encoded by different nucleotide sequences. Antimicrob Agents Chemother. 1993;37(9):1989–92.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Bradford PA, Urban C, Jaiswal A, Mariano N, Rasmussen BA, Projan SJ, et al. SHV-7, a novel cefotaxime-hydrolyzing β-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother. 1995;39(4):899–905.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Valenza G, Nickel S, Pfeifer Y, Pietsch M, Voigtlander E, Lehner-Reindl V, et al. Prevalence and genetic diversity of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in nursing homes in Bavaria, Germany. Vet Microbiol. 2017;200:138–41.PubMedGoogle Scholar
  201. 201.
    Trick WE, Weinstein RA, DeMarais PL, Kuehnert MJ, Tomaska W, Nathan C, et al. Colonization of skilled-care facility residents with antimicrobial-resistant pathogens. J Am Geriatr Soc. 2001;49(3):270–6.PubMedGoogle Scholar
  202. 202.
    Jiménez-Truque N, Saye EJ, Soper N, Saville BR, Thomsen I, Edwards KM, et al. Longitudinal assessment of colonization with Staphylococcus aureus in healthy collegiate athletes. J Pediatric Infect Dis Soc. 2016;5(2):105–13.PubMedGoogle Scholar
  203. 203.
    Lindenmayer JM, Schoenfeld S, O'Grady R, Carney JK. Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community. Arch Intern Med. 1998;158(8):895–9.PubMedGoogle Scholar
  204. 204.
    Begier EM, Frenette K, Barrett NL, Mshar P, Petit S, Boxrud DJ, et al. A high-morbidity outbreak of methicillin-resistant Staphylococcus aureus among players on a college football team, facilitated by cosmetic body shaving and turf burns. Clin Infect Dis. 2004;39(10):1446–53.PubMedPubMedCentralGoogle Scholar
  205. 205.
    CDC. Methicillin-resistant Staphylococcus aureus infections among competitive sports participants–Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. MMWR. 2003;52:793–5.Google Scholar
  206. 206.
    Young LM, Motz VA, Markey ER, Young SC, Beaschler RE. Recommendations for best disinfectant practices to reduce the spread of infection via wrestling mats. J Athl Train. 2017;52(2):82–8.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Dao MN, Laurene M, Elizabeth B. Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg Infect Dis J. 2005;11(4):526.Google Scholar
  208. 208.
    Buss BF, Mueller SW, Theis M, Keyser A, Safranek TJ. Population-based estimates of methicillin-resistant Staphylococcus aureus (MRSA) infections among high school athletes – Nebraska, 2006-2008. J Sch Nurs. 2009;25(4):282–91.PubMedGoogle Scholar
  209. 209.
    McKenna M. National Geographic 2015. Available from:
  210. 210.
    Perez AJ. Giants TE. Daniel Fells to have 10th surgery to treat MRSA USA Today 2015. Available from:
  211. 211.
    Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med. 2005;352(5):468–75.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Kantele A, Laaveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60(6):837–46.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Leangapichart T, Rolain JM, Memish ZA, Al-Tawfiq JA, Gautret P. Emergence of drug resistant bacteria at the Hajj: a systematic review. Travel Med Infect Dis. 2017;Google Scholar
  214. 214.
    Katz AR, Komeya AY, Kirkcaldy RD, Whelen AC, Soge OO, Papp JR, et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis. 2017;Google Scholar
  215. 215.
    Kim JS, Kim JJ, Kim SJ, Jeon S-E, Seo KY, Choi J-K, et al. Outbreak of ciprofloxacin-resistant Shigella sonnei associated with travel to Vietnam, Republic of Korea. Emerg Infect Dis. 2015;21(7):1247–50.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Post A, Martiny D, van Waterschoot N, Hallin M, Maniewski U, Bottieau E, et al. Antibiotic susceptibility profiles among Campylobacter isolates obtained from international travelers between 2007 and 2014. Eur J Clin Microbiol Infect Dis. 2017;Google Scholar
  217. 217.
    Dave J, Warburton F, Freedman J, de Pinna E, Grant K, Sefton A, et al. What were the risk factors and trends in antimicrobial resistance for enteric fever in London 2005-2012? J Med Microbiol. 2017;Google Scholar
  218. 218.
    Reinheimer C, Kempf VAJ, Jozsa K, Wichelhaus TA, Hogardt M, O’Rourke F, et al. Prevalence of multidrug-resistant organisms in refugee patients, medical tourists and domestic patients admitted to a German university hospital. BMC Infect Dis. 2017;17:17.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Antimicrobial Development Specialists, LLCNyackUSA

Personalised recommendations