Torsion of a Transversely Isotropic Elastic Half-Space

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 91)

Abstract

In this chapter, we consider the circumferential tangential displacement field induced at the surface of a transversely isotropic elastic half-space by axisymmetric torsional loading, e.g., with the help of a rigid punch bonded to the half-space surface. In particular, the axisymmetric problem of the torsion of an elastic half-space produced by means of a bonded flat-ended punch is studied in detail.

References

  1. 1.
    Aleksandrov, V.M., Kovalenko, E.V.: Problems of the Continuum Mechanics with Mixed Boundary Conditions. Nauka, Moscow (1986). [in Russian]Google Scholar
  2. 2.
    Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)CrossRefGoogle Scholar
  3. 3.
    Dhawan, G.K.: A mixed boundary value problem of a transversely-isotropic half-space under torsion by a flat annular rigid stamp. Acta Mech. 41, 289–297 (1981)CrossRefGoogle Scholar
  4. 4.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, New York (1980)Google Scholar
  5. 5.
    Hanson, M.T., Puja, I.W.: The Reissner-Sagoci problem for the transversely isotropic half-space. J. Appl. Mech. 64, 692–694 (1997)CrossRefGoogle Scholar
  6. 6.
    Jahnke, E., Emde, F., Lösch, F.: Special Functions: Formulae, Graphs, Tables [Russian translation]. Nauka, Moscow (1977)Google Scholar
  7. 7.
    Jain, D.L., Kanwal, R.P.: An integral equation method for solving mixed boundary value problems. SIAM J. Appl. Math. 20, 642–658 (1971)CrossRefGoogle Scholar
  8. 8.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  9. 9.
    Kachanov, M., Shafiro, B., Tsukrov, I.: Handbook of Elasticity Solutions. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  10. 10.
    Lin, W., Kuo, C.H., Keer, L.M.: Analysis of a transversely isotropic half space under normal and tangential loadings. J. Tribol. ASME 113, 335–338 (1991)CrossRefGoogle Scholar
  11. 11.
    Rahimian, M., Ghorbani-Tanha, A.K., Eskandari-Ghadi, M.: The Reissner-Sagoci problem for a transversely isotropic half-space. Int. J. Numer. Anal. Met. Geomech. 30, 1063–1074 (2006)CrossRefGoogle Scholar
  12. 12.
    Reissner, E., Sagoci, H.F.: Forced torsional oscillations of an elastic halfspace. I. J. Appl. Phys. 15, 652–654 (1944)CrossRefGoogle Scholar
  13. 13.
    Shibuya, T.: A mixed boundary value problem of an elastic half-space under torsion by a flat annular rigid stamp. Trans. Japan Soc. Mech. Eng. 19, 233–238 (1975)Google Scholar
  14. 14.
    Tsantiotou-Kermanidou, A.D., Mastrogiannis, E.N., Kermanidis, T.B.: Torsion des unendlichen Halbraumes durch einen kreisförmigen Stempel. Ingenieur-Archiv 55, 428–433 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Department of Mathematics, IMPACSAberystwyth UniversityAberystwythUK

Personalised recommendations