Nursing Care for Patient with Heart Failure

  • Mauro Cotza
  • Giovanni Carboni


Heart failure (HF) in congenital heart disease (CHD) can affect patients either as an evolution of the primary pathology or as a complication after corrective or palliative heart surgery. Extracorporeal life support (ECLS) is a strategy that substitute whole-body circulation when refractory heart failure cannot be further treated with conventional therapies. Extracorporeal membrane oxygenation (ECMO) can be instituted as a short-term support to take time to recovery or to bridge patients to other assistance devices or heart transplantation. Ventricular assist devices (VAD), conversely, can be used for a long-term support, when recovery is unlike to be achieved in a short time and months are the target bridging time. ECMO and VAD are special topics that require a multidisciplinary team with a specific training, assuring a daily service in intensive care unit (ICU) for ECMO and in the ward or at home for VAD.


  1. 1.
    Ross HJ, Law Y, Book WM, Broberg CS, Burchill L, Cecchin F, Chen JM, Delgado D, Dimopoulos K, Everitt MD, Gatzoulis M, Harris L, Hsu DT, Kuvin JT, Martin CM, Murphy AM, Singh G, Spray TL, Stout KK, American Heart Association Adults With Congenital Heart Disease Committee of the Council on Clinical Cardiology and Council on Cardiovascular Disease in the Young, the Council on Cardiovascular Radiology and Intervention, and the Council on Functional Genomics and Translational Biology. Transplantation and mechanical circulatory support in congenital heart disease: a scientific statement from the American Heart Association. Circulation. 2016;133(8):802–20.CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Annich G, Lynch W, MacLaren G, Wilson J, Bartlett R. ECMO: extracorporeal cardiopulmonary support in critical care. Red Book. 4th ed. Extracorporeal life support.Google Scholar
  4. 4.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.CrossRefPubMedGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Duncan BW, Ibrahim AE, Hraska V, del Nido PJ, Laussen PC, Wessel DL, Mayer JE Jr, Bower LK, Jonas RA. Use of rapid- deployment extracorporeal membrane oxygenation for the resuscitation of pediatric patients with heart disease after cardiac arrest. J Thorac Cardiovasc Surg. 1998;116(2):305–11.CrossRefPubMedGoogle Scholar
  8. 8.
    Booth KL, Roth SJ, Thiagarajan RR, Almodovar MC, del Nido PJ, Laussen PC. Extracorporeal membrane oxygenation support of the Fontan and bidirectional Glenn circulations. Ann Thorac Surg. 2004;77(4):1341–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Caicedo A, Papademetriou MD, Elwell CE, Hoskote A, Elliott MJ, Van Huffel S, Tachtsidis I. Canonical correlation analysis in the study of cerebral and peripheral haemodynamics interrelations with systemic variables in neonates supported on ECMO. Adv Exp Med Biol. 2013;765:23–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Maldonado Y, Singh S, Taylor MA. Cerebral near-infrared spectroscopy in perioperative management of left ventricular assist device and extracorporeal membrane oxygenation patients. Curr Opin Anaesthesiol. 2014;27(1):81–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Buijs EA, Houmes RJ, Rizopoulos D, Wildschut ED, Reiss IK, Ince C, Tibboel D. Arterial lactate for predicting mortality in children requiring extracorporeal membrane oxygenation. Minerva Anestesiol. 2014;80(12):1282–93.PubMedGoogle Scholar
  12. 12.
    Park SJ, Kim SP, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW. Blood lactate level during extracorporeal life support as a surrogate marker for survival. J Thorac Cardiovasc Surg. 2014;148(2):714–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Ranucci M, Carboni G, Cotza M, de Somer F. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance. Perfusion. 2017;32(1):4–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Selewski DT, Cornell TT, Blatt NB, Han YY, Mottes T, Kommareddi M, Gaies MG, Annich GM, Kershaw DB, Shanley TP, Heung M. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40(9):2694–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumar TK, Zurakowski D, Dalton H, et al. Extracorporeal membrane oxygenation in postcardiotomy patients: factors influencing outcome. Thorac Cardiovasc Surg. 2010;140:330–6.CrossRefGoogle Scholar
  16. 16.
    Fiser RT, Irby K, Ward RM, Tang X, McKamie W, Prodhan P, Corwin HL. RBC transfusion in pediatric patients supported with extracorporeal membrane oxygenation: is there an impact on tissue oxygenation? Pediatr Crit Care Med. 2014;15(9):806–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Young G, Boshkov LK, Sullivan JE, Raffini LJ, et al. Argatroban therapy in pediatric patients requiring nonheparin anticoagulation: an open-label, safety, efficacy, and pharmacokinetic study. Pediatr Blood Cancer. 2011;56:1103–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Young G. New anticoagulants in children. Hematology. 2008:245–50.CrossRefGoogle Scholar
  19. 19.
    Ranucci M, Ballotta A, Kandil H, et al. Bivalirudin-based vs. conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit Care. 2011;15:R275.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bembea MM, Annich G, Rycus P, et al. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med. 2013;14(2):e77–84.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ranucci M, Baryshnikova E, Cotza M, Carboni G, Isgrò G, Carlucci C, Ballotta A. Group for the Surgical and Clinical Outcome Research (SCORE). Coagulation monitoring in postcardiotomy ECMO: conventional tests, point-of-care, or both? Minerva Anestesiol. 2016;82(8):858–66.PubMedGoogle Scholar
  22. 22.
    Blume ED, Naftel DC, Bastardi HJ, Duncan BW, Kirklin JK, Webber SA, Pediatric Heart Transplant Study Investigators. Outcomes of children bridged to heart transplantation with ventricular assist devices: a multi-institutional study. Circulation. 2006;113(19):2313–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Sung SY, Hsu PS, Chen JL, Tsai CS, Tsai YT, Lin CY, Lee CY, Ke HY, Lin YC. Prolonged use of levitronix left ventricular assist device as a bridge to heart transplantation. Acta Cardiol Sin. 2015;31(3):249–52.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zafar F, Castleberry C, Khan MS, et al. Pediatric heart transplant waiting list mortality in the era of ventricular assist devices. J Heart Lung Transplant. 2015;34(1):82–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Almond CS, Bucholz H, Massicott P, et al. Berlin Heart EXCOR pediatric ventricular assist device Investigational Device Exemption Study: study design and rationale. Am Heart J. 2011;162(3):425–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Weinstein S, Bello R, Pizarro C, et al. The use of the Berlin Heart EXCOR in patients with functional single ventricle. J Thorac Cardiovasc Surg. 2014;147(2):697–705.CrossRefPubMedGoogle Scholar
  27. 27.
    Massad MG, Cook DJ, Schmitt SK, et al. Factors influencing HLA sensitization in implantable LVAD recipients. Ann Thorac Surg. 1997;64(4):1120–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Davies RR, Haldeman S, McCulloch MA, Pizarro C. Ventricular assist devices as a bridge-to-transplant improve early posttransplant outcomes in children. J Heart Lung Transplant. 2014;33(7):704–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Rossano JW, Woods RK, Berger S, et al. Mechanical support as failure intervention in patients with cavopulmonary shunts (MFICS): rationale and aims of a new registry of mechanical circulatory support in single ventricle patients. Congenit Heart Dis. 2013;8(3):182–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Rossano JW, Goldberg DJ, Fuller S, et al. Successful use of the total artificial heart in the failing Fontan circulation. Ann Thorac Surg. 2014;97(4):1483–40.CrossRefGoogle Scholar
  31. 31.
    Pearce FB, Kirklin JK, Holman WL, Barrett CS, Romp RL, Lau YR. Successful cardiac transplant after Berlin Heart bridge in a single ventricle heart: use of aortopulmonary shunt as a supplementary source of pulmonary blood flow. J Thorac Cardiovasc Surg. 2009;137(1):e40–2.CrossRefPubMedGoogle Scholar
  32. 32.
    Blume ED, Rosenthal DN, Rossano JW, et al. Outcomes of children implanted with ventricular assist devices in the United States: first analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). J Heart Lung Transplant. 2016;35(5):578–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Strueber M, Schmitto JD, Kutschka I, Haverich A. Placement of 2 implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J Thorac Cardiovasc Surg. 2012;143:507–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Ryan TD, Jefferies JL, Zafar F, et al. The evolving role of the total artificial heart in the management of end-stage congenital heart disease and adolescents. ASAIO J. 2015;61(1):8–1.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mauro Cotza
    • 1
  • Giovanni Carboni
    • 1
  1. 1.ECMO/ECLS UnitIRCCS Policlinico San DonatoMilanItaly

Personalised recommendations