Efficient Designated-Verifier Non-interactive Zero-Knowledge Proofs of Knowledge

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10822)

Abstract

We propose a framework for constructing efficient designated-verifier non-interactive zero-knowledge proofs (\(\mathsf {DVNIZK}\)) for a wide class of algebraic languages over abelian groups, under standard assumptions. The proofs obtained via our framework are proofs of knowledge, enjoy statistical, and unbounded soundness (the soundness holds even when the prover receives arbitrary feedbacks on previous proofs). Previously, no efficient \(\mathsf {DVNIZK}\) system satisfying any of those three properties was known. Our framework allows proving arbitrary relations between cryptographic primitives such as Pedersen commitments, ElGamal encryptions, or Paillier encryptions, in an efficient way. For the latter, we further exhibit the first non-interactive zero-knowledge proof system in the standard model that is more efficient than proofs obtained via the Fiat-Shamir transform, with still-meaningful security guarantees and under standard assumptions. Our framework has numerous applications, in particular for the design of efficient privacy-preserving non-interactive authentication.

Keywords

Zero-knowledge proofs Non-interactive proofs 

Notes

Acknowledgements

We thank Jens Groth for insightful discussions and contributions to early versions of this work. The first author was supported by EU Horizon 2020 grant 653497 (project PANORAMIX). The second author was supported by ERC grant 339563 (project CryptoCloud) and ERC grant 724307 (project PREP-CRYPTO).

References

  1. 1.
    Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_3Google Scholar
  2. 2.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195. IEEE Computer Society Press, October 2004Google Scholar
  3. 3.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_7CrossRefGoogle Scholar
  4. 4.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_20CrossRefGoogle Scholar
  5. 5.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03298-1_9CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993Google Scholar
  7. 7.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_25CrossRefGoogle Scholar
  8. 8.
    Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_6CrossRefGoogle Scholar
  9. 9.
    Benhamouda, F., Pointcheval, D.: Trapdoor smooth projective hash functions. Cryptology ePrint Archive, Report 2013/341 (2013). http://eprint.iacr.org/2013/341
  10. 10.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988Google Scholar
  11. 11.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_3CrossRefGoogle Scholar
  12. 12.
    Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_3CrossRefGoogle Scholar
  13. 13.
    Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_25CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_33CrossRefGoogle Scholar
  15. 15.
    Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from \(\sf DDH\). In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_26Google Scholar
  16. 16.
    Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge. Cryptology ePrint Archive, Report 2017/1029 (2017). http://eprint.iacr.org/2017/1029
  17. 17.
    Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_29Google Scholar
  18. 18.
    Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: ACM CCS 2014, pp. 1205–1216. ACM Press (2014)Google Scholar
  19. 19.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_25Google Scholar
  20. 20.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22Google Scholar
  21. 21.
    Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost as efficient and general as the fiat-shamir transform without programmable random oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 83–111. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_4CrossRefGoogle Scholar
  22. 22.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  23. 23.
    Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_3CrossRefGoogle Scholar
  24. 24.
    Damgård, I., Jurik, M.: A length-flexible threshold cryptosystem with applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45067-X_30CrossRefGoogle Scholar
  25. 25.
    Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of paillier’s public-key system with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)CrossRefGoogle Scholar
  26. 26.
    Damgård, I., Jurik, M.: A generalisation, a simpli.cation and some applications of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_9CrossRefGoogle Scholar
  27. 27.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_33CrossRefGoogle Scholar
  28. 28.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  29. 29.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  30. 30.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317. IEEE Computer Society Press, October 1990Google Scholar
  31. 31.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12Google Scholar
  32. 32.
    Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_10CrossRefGoogle Scholar
  33. 33.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_1CrossRefGoogle Scholar
  34. 34.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_12CrossRefGoogle Scholar
  36. 36.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  37. 37.
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_6CrossRefGoogle Scholar
  38. 38.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_21CrossRefGoogle Scholar
  39. 39.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24CrossRefGoogle Scholar
  40. 40.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
  41. 41.
    Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_4Google Scholar
  42. 42.
    Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_5Google Scholar
  43. 43.
    Lipmaa, H.: Optimally sound sigma protocols under DCRA. Cryptology ePrint Archive, Report 2017/703 (2017). http://eprint.iacr.org/2017/703
  44. 44.
    Oren, Y.: On the cunning power of cheating verifiers: some observations about zero knowledge proofs (extended abstract). In: 28th FOCS, pp. 462–471. IEEE Computer Society Press, October 1987Google Scholar
  45. 45.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16Google Scholar
  46. 46.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_16CrossRefGoogle Scholar
  47. 47.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_33Google Scholar
  48. 48.
    Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_22CrossRefGoogle Scholar
  49. 49.
    Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02384-2_18CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  1. 1.National and Kapodistrian University of AthensAthensGreece
  2. 2.Karsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations