Advertisement

Spontaneous Incidence of Ocular Abnormalities in Laboratory Animals

  • Brian C. Gilger
  • Michael H. Brown
  • Robert J. Munger
  • Joshua T. Bartoe
  • Martin Bussieres
  • Cynthia S. Cook
Chapter

Abstract

This chapter provides incidence data on spontaneous ophthalmic abnormalities in the most commonly used species in toxicological and pharmacokinetic drug research. This data can be used to better differentiate test article-related ocular findings from background incidental lesions to enhance interpretation of ophthalmic findings, improve speed of drug development, reduce the number of studies that need to be repeated, and thus reduce the overall number of animals used in toxicology research and drug development.

Keywords

Incidence Spontaneous Ocular lesions Laboratory animal Ophthalmology Ocular toxicology 

Notes

Acknowledgments

The authors thank the following contract research organizations and individuals for assistance in collection of the data for this chapter:

Charles River Laboratories, Wil Research, Ashland, Ohio. Robert Wally, Brian Ronk and Jeanette Howell

Charles River Laboratories, Reno, Nevada. Dr. Margaret Collins

Charles River Laboratories, Horsham, Pennsylvania. Dr. Douglas Learn

Envigo, East Millstone, New Jersey. Christopher Blum

MPI Research, Mattawan, Michigan

Powered Research, Research Triangle Park, North Carolina. Dr. David Culp, Justin Prater

References

  1. 1.
    Reduce, refine, replace. Nat Immunol. 2010;11(11):971.  https://doi.org/10.1038/ni1110-971.
  2. 2.
    Aldinger KA, Sokoloff G, Rosenberg DM, Palmer AA, Millen KJ. Genetic variation and population substructure in outbred CD-1 mice: implications for genome-wide association studies. PLoS One. 2009;4(3):e4729.  https://doi.org/10.1371/journal.pone.0004729.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chia R, Achilli F, Festing MFW, Fisher EMC. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37(11):1181–6.  https://doi.org/10.1038/ng1665.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mukaratirwa S, Petterino C, Naylor SW, Bradley A. Incidences and range of spontaneous lesions in the eye of Crl:CD-1(ICR)BR mice used in toxicity studies. Toxicol Pathol. 2014;43:530–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hubert M, Gerin G, Durand-cavagna G. Spontaneous ophthalmic lesions in young swiss mice. Lab Anim Sci. 1999;49(3):232–40.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Van Winkle TJ, Balk MW. Spontaneous corneal opacities in laboratory mice. Lab Anim Sci. 1986;36(3):248–55.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Williams DL. Ocular disease in rats: a review. Vet Ophthalmol. 2002;5(3):183–91.  https://doi.org/10.1046/j.1463-5224.2002.00251.x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kuno H, Usui T, Eydelloth RS, Wolf ED. Spontaneous ophthalmic lesions in young Sprague-Dawley rats. J Vet Med Sci. 1991;53(4):607–14.  https://doi.org/10.1292/jvms.53.607.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wegener A, Jochims K. Clinical, histological and ultrastructural characteristics of a spontaneous corneal opacity in Sprague-Dawley rats. Ophthalmic Res. 1994;26(5):296–303.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Taradach C, Regnier B, Perraud J. Eye lesions in Sprague-Dawley rats: type and incidence in relation to age. Lab Anim. 1981;15(3):285–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Hubert MF, Gillet JP, Durand-Cavagna G. Spontaneous retinal changes in Sprague Dawley rats. Lab Anim Sci. 1994;44(6):561–7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin WL, Essner E. An electron microscopic study of retinal degeneration in Sprague-Dawley rats. Lab Anim Sci. 1987;37(2):180–6.PubMedPubMedCentralGoogle Scholar
  13. 13.
    White WJ, Lee CS. The development and maintenance of the Crl:CD(SD) IGS BR rat breeding system. Charles River Lab. 1998;8:8–14.Google Scholar
  14. 14.
    Pettersen JC, Morrissey RL, Saunders DR, et al. A 2-year comparison study of Crl:CD BR and Hsd:Sprague-Dawley SD rats. Toxicol Sci. 1996;33(2):196–211.  https://doi.org/10.1093/toxsci/33.2.196.CrossRefGoogle Scholar
  15. 15.
    Wojcinski ZW, Houston B, Gragtmans B, Rogers J, Piscopo I, Baker K. A spontaneous corneal change in juvenile Wistar rats. J Comp Pathol. 1999;120(3):281–94.  https://doi.org/10.1053/jcpa.1998.0276.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eiben R. Frequency of spontaneous opacities in the cornea and lens observed in chronic toxicity studies in Wistar rats: experience with a standardized terminology glossary (Hattersheimer Kreis). Res Commun Pharmacol Toxicol. 2001;6(3-4):238–45.Google Scholar
  17. 17.
    Inagaki K, Koga H, Inoue K, Suzuki K, Suzuki H. Spontaneous intraocular hemorrhage in rats during postnatal ocular development. Comp Med. 2014;64(1):34–43.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med. 2005;55(2):175–82.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lavail MM, Sidman RL. C57BL/6J mice with inherited retinal degeneration. Arch Ophthalmol. 1974;91(5):394–400.  https://doi.org/10.1001/archopht.1974.03900060406015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cook CS, Sulik KK. Sequential scanning electron microscopic analyses of normal and spontaneously occurring abnormal ocular development in C57B1/6J mice. Scan Electron Microsc. 1986;3:1215–27.Google Scholar
  21. 21.
    Tyndall DA, Cook CS. Spontaneous, asymmetrical microphthalmia in C57Bl/6J mice. J Craniofac Genet Dev Biol. 1990;10(4):353–61.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Smith RS, Roderick TH, Sundberg JP. Microphthalmia and associated abnormalities in inbred black mice. Lab Anim Sci. 1994;44(6):551–60.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kohale K, Ingle A, Kelkar A, Parab P. Dense cataract and microphthalmia—new spontaneous mutation in BALB/c mice. Comp Med. 2004;54(3):275–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Park K, Seo JH. Study on the ophthalmic diseases in ICR mice and BALB/c mice. Exp Anim. 2006;55(2):83–90.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bakthavachalu B, Kalanke S, Galande S, et al. Dense cataract and microphthalmia (dcm) in BALB/c mice is caused by mutations in the GJA8 locus. J Genet. 2010;89(2):147–54.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Losco PE, Troup CM. Corneal dystrophy in Fischer 344 rats. Lab Anim Sci. 1988;38(6):702–10.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bruner RH, Keller WF, Stitzel KA, et al. Spontaneous corneal dystrophy and generalized basement membrane changes in Fischer-344 rats. Toxicol Pathol. 1992;20:357–66.  https://doi.org/10.1177/019262339202000306.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Okano T, Uga S, Ishikawa S, Shumiya S. Histopathological study of hereditary cataractous lenses in SCR strain rat. Exp Eye Res. 1993;57(5):567–76.  https://doi.org/10.1006/exer.1993.1161.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Komich RJ. Anophthalmos: an inherited trait in a new stock of guinea pigs. Am J Vet Res. 1971;32(12):2099–105.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Wander AH, Bubel HC, McDowell SG. The pathogenesis of herpetic ocular disease in the guinea pig. Arch Virol. 1987;95(3-4):197–209.  https://doi.org/10.1007/BF01310780.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Williams D, Sullivan A. Ocular disease in the guinea pig (cavia porcellus): a survey of 1000 animals. Vet Ophthalmol. 2010;13(Suppl 1):54–62.  https://doi.org/10.1111/j.1463-5224.2010.00812.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Otto G, Lipman NS, Murphy JC. Corneal dermoid in a hairless guinea pig. Lab Anim Sci. 1991;41(2):171–2.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wappler O, Allgoewer I, Schaeffer EH. Conjunctival dermoid in two guinea pigs: a case report. Vet Ophthalmol. 2002;5(3):245–8.  https://doi.org/10.1046/j.1463-5224.2002.00242.x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bettelheim FA, Churchill AC, Zigler JS. On the nature of hereditary cataract in strain 13/N guinea pigs. Curr Eye Res. 1997;16(9):917–24.  https://doi.org/10.1076/ceyr.16.9.917.5047.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lu F, Zhou X, Jiang L, et al. Axial myopia induced by hyperopic defocus in guinea pigs: a detailed assessment on susceptibility and recovery. Exp Eye Res. 2009;89(1):101–8.  https://doi.org/10.1016/j.exer.2009.02.019.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brooks DE, McCracken MD, Collins BR. Heterotopic bone formation in the ciliary body of an aged guinea pig. Lab Anim Sci. 1990;40(1):88–90.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Griffith JW, Lang CM. Vitamin E and selenium status of guinea pigs with myocardial necrosis. Lab Anim Sci. 1987;37:776–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schaffer EH, Pfleghaar S. Secondary open angle glaucoma from osseous choristoma of the ciliary body in guinea pigs. Tierarztl Prax. 1995;23(4):410–4.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Racine J, Behn D, Simard E, Lachapelle P. Spontaneous occurrence of a potentially night blinding disorder in guinea pigs. Doc Ophthalmol. 2003;107:59–69.  https://doi.org/10.1023/A:1024435911882.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ninomiya H, Inomata T. Microvasculature of the mouse eye: scanning electron microscopy of vascular corrosion casts. J Exp Anim Sci. 2006;43(3):149–59.  https://doi.org/10.1016/j.jeas.2006.05.002.CrossRefGoogle Scholar
  41. 41.
    Schiavo DM. Multifocal retinal dysplasia in the Syrian hamster LAK:LVG (SYR). J Environ Pathol Toxicol. 1980;3(5-6):569–76.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Asher JH, James SC. The primary ultrastructural defect caused by anophthalmic white (Wh) in the Syrian hamster. Proc Natl Acad Sci U S A. 1982;79(14):4371–5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Atkinson M. Suspected keratitis sicca in a Syrian hamster. Vet Rec. 2000;146(23):680.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Rajaei SM, Sadjadi R, Sabzevari A, Ghaffari MS. Results of phenol red thread test in clinically normal Syrian hamsters (Mesocricetus auratus). Vet Ophthalmol. 2013;16(6):436–9.  https://doi.org/10.1111/vop.12024.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hausler HR, Sibay TM, Stachowska B. Observations of retinal microaneurysms in a metahypophyseal diabetic Chinese hamster. Am J Ophthalmol. 1963;56(2):242–4.  https://doi.org/10.1016/0002-9394(63)91857-9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Holve DL, Mundwiler KE, Pritt SL. Incidence of spontaneous ocular lesions in laboratory rabbits. Comp Med. 2011;61(5):436–40.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Jeong MB, Kim NR, Yi NY, et al. N Z White Rabbits. 2005;54:395–402.Google Scholar
  48. 48.
    Munger RJ, Langevin N, Podval J. Spontaneous cataracts in laboratory rabbits. Vet Ophthalmol. 2002;5(3):177–81.  https://doi.org/10.1046/j.1463-5224.2002.00245.x.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Peng X, Roshwalb S, Cooper TK, Zimmerman H, Christensen ND. High incidence of spontaneous cataracts in aging laboratory rabbits of an inbred strain. Vet Ophthalmol. 2015;18(3):186–90.  https://doi.org/10.1111/vop.12203.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Morishima H, Nonoyama T, Sasaki S, Miyajima H. Spontaneous lesions in beagle dogs used in toxicity studies. Jikken Dobutsu. 1990;39(2):239–48.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Barnes J, Cotton P, Robinson S, Jacobsen M. Spontaneous pathology and routine clinical pathology parameters in aging beagle dogs: a comparison with adolescent and young adults. Vet Pathol. 2016;53(2):447–55.  https://doi.org/10.1177/0300985815610390.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hottendorf GH, Hirth RS. Lesions of spontaneous subclinical disease in beagle dogs. Vet Pathol. 1974;11(3):240–58.  https://doi.org/10.1177/030098587401100306.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Loget O. Spontaneous ocular findings and esthesiometry/tonometry measurement in the Göttingen minipig (conventional and microbiologically defined). In: Weisse I, Hockwin O, Green K, Tripathi R, editors. Ocular toxicology. Boston: Springer; 1994. p. 351–402.Google Scholar
  54. 54.
    McInnes EF, McKeag S. A brief review of infrequent spontaneous findings, peculiar anatomical microscopic features, and potential artifacts in Göttingen minipigs. Toxicol Pathol. 2016;44(3):338–45.  https://doi.org/10.1177/0192623315622423.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    McInnes EF. Minipigs. In: Background lesions in laboratory animals. Edinburgh: Elsevier; 2011. p. 81–5.  https://doi.org/10.1016/B978-0-7020-3519-7.00006-1.CrossRefGoogle Scholar
  56. 56.
    Helke KL, Nelson KN, Sargeant AM, et al. Background pathological changes in minipigs. Toxicol Pathol. 2016;44(3):325–37.  https://doi.org/10.1177/0192623315611762.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jeppesen G, Skydsgaard M. Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol. 2015;43(2):257–66.  https://doi.org/10.1177/0192623314538344.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Saint-Macary G, Berthoux C. Ophthalmologic observations in the young Yucatan micropig. Lab Anim Sci. 1994;44(4):334–7.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ito T, Chatani F, Sasaki S, Ando T, Miyajima H. Spontaneous lesions in cynomolgus monkeys used in toxicity studies. Jikken Dobutsu. 1992;41(4):455–69.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Drevon-Gaillot E, Perron-Lepage MF, Clément C, Burnett R. A review of background findings in cynomolgus monkeys (Macaca fascicularis) from three different geographical origins. Exp Toxicol Pathol. 2006;58(2-3):77–88.  https://doi.org/10.1016/j.etp.2006.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chamanza R, Marxfeld HA, Blanco AI, Naylor SW, Bradley AE. Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol Pathol. 2010;38(4):642–57.  https://doi.org/10.1177/0192623310368981.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sato J, Doi T, Kanno T, Wako Y, Tsuchitani M, Narama I. Histopathology of incidental findings in cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. J Toxicol Pathol. 2012;25(1):63–101.  https://doi.org/10.1293/tox.25.63.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Brian C. Gilger
    • 1
  • Michael H. Brown
    • 2
  • Robert J. Munger
    • 3
  • Joshua T. Bartoe
    • 1
  • Martin Bussieres
    • 4
  • Cynthia S. Cook
    • 5
  1. 1.MPI Research Ophthalmology Services54943 N Main St.MattawanUSA
  2. 2.Animal Eye Center of New JerseyLittle FallsUSA
  3. 3.Animal Ophthalmology ClinicDallasUSA
  4. 4.V&O Services Inc.Saint-LazareCanada
  5. 5.Veterinary Vision, Inc.San CarlosUSA

Personalised recommendations