Advertisement

Standards for Conducting Ophthalmic Examinations in Laboratory Animals

  • David A. Wilkie
  • Brian C. Gilger
  • Joshua T. Bartoe
Chapter

Abstract

Ocular toxicology pertains to toxicological effects on the eye of drugs administered topically, periocularly, intraocularly, or systemically. The ophthalmic examination is able to provide detailed in-life information and is used in combination with clinical observations, clinical pathology, and histopathology to assess potential toxicologic effects. The ophthalmologist must be familiar with the wide range of species used in the field of toxicology, be familiar with the anatomic variations associated with these species, be able to differentiate an inherited or a breed-related finding from a study-related effect, be competent with the required ophthalmic equipment, and be capable of examining this wide range of animals.

Keywords

Laboratory animal Examination Ophthalmology Ocular toxicology Standards 

References

  1. 1.
    Munger RJ, Collins M. Assessing ocular toxicity potential: basic theory and techniques. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 23–52.Google Scholar
  2. 2.
    Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1994;5:110–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1995;6:108–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Novack GD. Ocular toxicology. Curr Opin Ophthalmol. 1997;8:88–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Santaella RM, Fraunfelder FW. Ocular adverse effects associated with systemic medications: recognition and management. Drugs. 2007;67:75–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55:383–417.CrossRefPubMedGoogle Scholar
  7. 7.
    Ver Hoeve JN, Munger RJ, Gourley IM, et al. Emerging electrophysiological technologies for assessing ocular toxicity in laboratory animals. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 123–57.Google Scholar
  8. 8.
    Pereira FQ, Bercht BS, Soares MG, et al. Comparison of a rebound and an applanation tonometer for measuring intraocular pressure in normal rabbits. Vet Ophthalmol. 2011;14:321–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Nork TM, Rasmussen CA, Christian BJ, et al. Emerging imaging technologies for assessing ocular toxicity in laboratory animals. In: Weir AB, Collins M, editors. Molecular and integrative toxicology: assessing ocular toxicology in laboratroy animals. New York: Humana Press; 2013. p. 53–121.Google Scholar
  10. 10.
    Kontiola AI, Goldblum D, Mittag T, et al. The induction/impact tonometer: a new instrument to measure intraocular pressure in the rat. Exp Eye Res. 2001;73:781–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Goldblum D, Kontiola AI, Mittag T, et al. Non-invasive determination of intraocular pressure in the rat eye. Comparison of an electronic tonometer (TonoPen), and a rebound (impact probe) tonometer. Graefes Arch Clin Exp Ophthalmol. 2002;240:942–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Danias J, Kontiola AI, Filippopoulos T, et al. Method for the noninvasive measurement of intraocular pressure in mice. Investig Ophthalmol Vis Sci. 2003;44:1138–41.CrossRefGoogle Scholar
  13. 13.
    Rowland JM, Potter DE, Reiter RJ. Circadian rhythm in intraocular pressure: a rabbit model. Curr Eye Res. 1981;1:169–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Hackett RB, McDonald TO. Ophthalmic toxicology and assessing ocular irritation. In: Marzulli FN, Maibach HI, editors. Dermatotoxicology. 5th ed. Washington, DC: Hemisphere Publishing Corp; 1996. p. 749–815.Google Scholar
  15. 15.
    DiLoreto D Jr, Grover DA, del Cerro C, et al. A new procedure for fundus photography and fluorescein angiography in small laboratory animal eyes. Curr Eye Res. 1994;13:157–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Satoh T, Yamaguchi K. Ocular fundus abnormalities detected by fluorescein and indocyanine green angiography in the Royal College of Surgeons dystrophic rat. Exp Anim. 2000;49:275–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Herren JI, Kunzelman KS, Vocelka C, et al. Angiographic and histological evaluation of porcine retinal vascular damage and protection with perfluorocarbons after massive air embolism. Stroke. 1998;29:2396–403.CrossRefPubMedGoogle Scholar
  18. 18.
    Gelatt KN, Henderson JD, Steffen GR. Fluorescein angiography of the normal and diseased ocular fundi of the laboratory dog. J Am Vet Med Assoc. 1976;169:9.Google Scholar
  19. 19.
    Ninomiya H, Kuno H, Inagaki S. Vascular changes associated with chorioretinal and optic nerve colobomas in rats (Crj: CD(SD), IGS). Vet Ophthalmol. 2005;8:319–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Kommonen B, Koskinen L. Fluorescein angiography of the canine ocular fundus in ketamine-xylazine anesthesia. Acta Vet Scand. 1984;25:346–51.PubMedGoogle Scholar
  21. 21.
    Narfstrom K. Progressive retinal atrophy in the Abyssinian cat. Clinical characteristics. Investig Ophthalmol Vis Sci. 1985;26:193–200.Google Scholar
  22. 22.
    Gasthuys F, Pollet L, Simoens P, et al. Anaesthesia for fluorescein angiography of the ocular fundus in the miniature pig. Vet Res Commun. 1990;14:393–402.CrossRefPubMedGoogle Scholar
  23. 23.
    Hyvarinen L, Flower RW. Indocyanine green fluorescence angiography. Acta Ophthalmol. 1980;58:528–38.CrossRefGoogle Scholar
  24. 24.
    Flower RW. Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Investig Ophthalmol. 1973;12:881–95.Google Scholar
  25. 25.
    Ekesten B, Komaromy AM, Ofri R, et al. Guidelines for clinical electroretinography in the dog: 2012 update. Doc Ophthalmol. 2013;127(2):79–87.CrossRefPubMedGoogle Scholar
  26. 26.
    Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol. 2009;118:69–77.CrossRefPubMedGoogle Scholar
  27. 27.
    Fujimoto JG, Pitris C, Boppart SA, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work. Investig Ophthalmol Vis Sci. 2011;52:2425–36.CrossRefGoogle Scholar
  29. 29.
    McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol. 2012;15(Suppl 2):13–28.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huber G, Beck SC, Grimm C, et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Investig Ophthalmol Vis Sci. 2009;50:5888–95.CrossRefGoogle Scholar
  31. 31.
    Fleckenstein M, Charbel Issa P, Helb HM, et al. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Investig Ophthalmol Vis Sci. 2008;49:4137–44.CrossRefGoogle Scholar
  32. 32.
    McCarey BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea. 2008;27:1–16.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David A. Wilkie
    • 1
  • Brian C. Gilger
    • 1
  • Joshua T. Bartoe
    • 1
  1. 1.Department Chair, Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations