Advertisement

Electronic Sensors and Instruments for Coastal Ocean Observing

  • Jorge E. Corredor
Chapter

Abstract

Electromechanical, electro-optical, opto-chemical, and electrochemical sensors are now available that allow continuous real-time monitoring of a wide range of environmental parameters and process rates. These sensors are integrated into electronic instruments capable of directly or remotely capturing these properties or rate processes in quantitative terms as analog or digital data. This chapter describes in detail the wide range of commercially available sensors and instruments with examples for the most commonly measured physical, chemical, and biological variables in the marine environmental field. Principles of operation and limitations of available sensors are also described.

Keywords

Transducer Instrument Thermistor Conductivity bridge Bridge oscillator Current meter Current profiler Anemometer High frequency radar Radar tide gauge Optode Spectrophotometer Fluorometer Wet chemistry Nutrients 

References

  1. Atwood DK, Kinard WF, Barcelona MJ, Johnson CE. Comparison of Polarographic electrode and Winkler titration determinations of dissolved oxygen in oceanographic samples. Deep-Sea Res. 1977;24(3):311–3.CrossRefGoogle Scholar
  2. Atwood DK, Burton FJ, Corredor JE, Harvey G, Mata-Jimenez A, Vasquez-Botello A, Wade B. Results of the CARIPOL petroleum pollution monitoring project in the Wider Caribbean. Mar Poll Bull. 1987;18:540–8.CrossRefGoogle Scholar
  3. Atwood DK, Burton FJ, Corredor JE, Harvey G, Mata-Jimenez A, Vasquez-Botello A, Wade B. Petroleum pollution in the Caribbean. Oceanus. 1987/1988;30:25–32.Google Scholar
  4. Baringer MO, Larsen JC. Sixteen years of Florida current transport at 27°N. Geophys Res Lett. 2001;28(16):3179–82.CrossRefGoogle Scholar
  5. Barrick DE, Evans MW, Weber BL. Ocean surface currents mapped by radar. Science. 1977;198:138–44.CrossRefGoogle Scholar
  6. Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnol Oceanogr. 2012;57(3):698–710.CrossRefGoogle Scholar
  7. Blondeau-Pattissier D, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr. 2014;123:123–44.CrossRefGoogle Scholar
  8. Branham CW, Murphy DJ, Walsh ID. Reliably measuring pH in the ocean. Int Ocean Systems 2017; 21(5) http://www.intoceansys.co.uk/articles-detail.php?iss=0000000062&acl=0000000569. Accessed 4/28/2018.
  9. Brown SW, Flora SJ, Feinholz ME, Yarbrough MA, Houlihan T, Peters D, Kim YS, Mueller J, Johnson BC, Clark DK. The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration. Proc SPIE Optics Photonics Sensors Syst Next Generation Satellites XI. 2007;6744:67441M.Google Scholar
  10. Bureau International des Poids et Mesures. The international system of units (SI). 8th ed. Organisation intergouvernementale de la convention du Mètre Paris: 2006. ISBN 92-822-2213-6.Google Scholar
  11. Buskey EJ, Hyatt CJ. Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae. 2006;5(6):685–92.CrossRefGoogle Scholar
  12. Caldeira K. What corals are dying to tell us about CO2 and ocean acidification. Oceanography. 2007;20:188–95.CrossRefGoogle Scholar
  13. Caldeira K, Wickett ME. Anthropogenic carbon and ocean pH. Nature. 2003;425:365.CrossRefGoogle Scholar
  14. Chatterjee A, Gierach MM, Sutton AJ, Feely RA, Crisp D, Eldering A, Gunson MR, O’Dell CW, Stephens BB, Schimel DS. Influence of El Niño on CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science. 2017;358(6360):190.CrossRefGoogle Scholar
  15. Clark DK, et al. MOBY, a radiometric buoy for performance monitoring and vicarious calibration of Satellite Ocean color sensors: measurement and data analysis protocols. In: Muller JL, Fargion GS, editors. Ocean optics protocols for satellite ocean color sensor validation, revision 3. Greenbelt: National Aeronautics and Space Administration, Goddard Space Flight Center; 2002. Volume 2 NASA/TMm2002–210004/Rev3-Vol2.Google Scholar
  16. Clayton TD, Byrne RH. Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res I. 1993;40:2115–29.CrossRefGoogle Scholar
  17. Coppola L, Salvetat F, Delauney L, Machoczek D, Karstensen J, Sparnocchia S, Thierry V, Hydes D, Haller M, Nair R, Lefevre D. White paper on dissolved oxygen measurements: scientific needs and sensors accuracy. JERICO report (EU FP7 project, grant agreement no: 262584). 2013.; http://www.jerico-ri.eu/download/filebase/White%20paper%20DO_final%20-copyright.pdf. Accessed 4/28/2018.
  18. Corredor JE. Development and propagation of internal waves in the Mona Passage. Sea Tech. 2008;49(10):48–50.Google Scholar
  19. Corredor JE, Morell JM, Del Castillo C. Persistence of spilled oil in a tropical intertidal environment. Mar Poll Bull. 1990;21:385–8.CrossRefGoogle Scholar
  20. Corredor JE, Morell JM, López JM, Capella JE, Armstrong RA. Cyclonic eddy entrains Orinoco River plume. EOS Trans Am Geophys Union. 2004;85(20):197, 201–2.CrossRefGoogle Scholar
  21. Corredor JE, Amador A, Canals M, Rivera S, Capella JE, Morell JM, Glenn S, Handel E, Rivera E, Roarty H. Optimizing and validating high frequency radar surface current measurements in the mona passage. Mar Technol Soc J. 2011;45(3):49–58.CrossRefGoogle Scholar
  22. Cyronak, Tyler, Karl Schulz and Paul Jokiel. The Omega myth: what really drives lower calcification rates in an acidifying ocean ICES J Mar Sci 2015 DOI:  https://doi.org/10.1093/icesjms/fsv091. 5 p.CrossRefGoogle Scholar
  23. DeGrandpre MD, Hammar TR, Smith SP, Sayles FL. In situ measurements of seawater pCO2. Limnol Oceanogr. 1995;40:969–75.  https://doi.org/10.4319/lo.1995.40.5.0969.CrossRefGoogle Scholar
  24. Del Castillo CE. Remote sensing of organic matter in coastal waters. In: Miller RL, Del Castillo CE, McKee BA, editors. Remote sensing of coastal aquatic environments. Dordrecht: Springer; 2005. p. 157–79.CrossRefGoogle Scholar
  25. Del Castillo CE, Coble PG, Morell JM, López JM, Corredor JE. Analysis of optical properties of the Orinoco River by absorption and fluorescence spectroscopy: changes in optical properties of the dissolved organic matter. Mar Chem. 1999;66:35–51.Google Scholar
  26. Dickson AG. The carbon dioxide system in seawater: equilibrium chemistry and measurements. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P, editors. Guide to best practices for ocean acidification research and data reporting, vol. 260. Luxembourg: Publications Office of the European Union; 2010.Google Scholar
  27. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci. 2009;106(30):12235–40.CrossRefGoogle Scholar
  28. Dubelaar GBJ, Jonker RR. Flow cytometry as a tool for the study of phytoplankton. Sci Mar. 2000;64(2):135–56.CrossRefGoogle Scholar
  29. Dubelaar GBJ, Gerritzen PL, Beeker AER, Jonker RR, Tangen K. Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. Cytometry. 1999;37:247–54.CrossRefGoogle Scholar
  30. Dugene M, Thyssen M, Garcia N, Mayot N, Bernard G, Grégori G. Monitoring of a potential harmful algal species in the berre lagoon by ated in situ flow cytometry. In: Ceccaldi HJ, Hénocque Y, Koike Y, Komatsu T, Stora G, Tusseau-Vuillemin MH, editors. Marine productivity: ations and resilience of socio-ecosystems. Cham: Springer International Publishing; 2015. p. 117–27.Google Scholar
  31. Edwards AC, Hooda PS, Cook Y. Determination of nitrate in water containing dissolved organic carbon by ultraviolet spectroscopy. Int J Environ Anal Chem. 2001;80(1):49.CrossRefGoogle Scholar
  32. Eldering A, Chris WO, apos; Dell, Wennberg PO, Crisp D, Michael R, Gunson CV, Avis C, Braverman A, Castano R, Chang A, Chapsky L, Cheng C, Connor B, Dang L, Doran G, Fisher B, Frankenberg C, Fu D, Granat R, Hobbs J, Richard A, Lee M, Mandrake L, McDuffie J, Charles E, Miller VM, Natraj V, Denis O, apos, Brien GB, Osterman FO, Vivienne H, Payne HR, Pollock IP, Coleen M, Roehl RR, Schwandner F, Smyth M, Tang V, Taylor TE, Cathy TO, Wunch D, Yoshimizu J. The Orbiting Carbon Observatory- 2: first 18Â months of science data products. Atmos Meas Tech. 2017;10(2):549–63.Google Scholar
  33. Emery WJ, Wick GA, Schleussel P. Chapter 10. Skin and bulk sea surface temperatures: satellite measurements and corrections. In: Ikeda M, Dobson FW, editors. Oceanographic applications of remote sensing. Boca Raton: CRC Press; 1995. p. 145–65.Google Scholar
  34. Evans M, Liu J, Bacosa H, Rosenheim BE, Liua Z. Petroleum hydrocarbon persistence following the deepwater horizon oil spill as a function of shoreline energy. Mar Pollut Bull. 2017;115:47–56.CrossRefGoogle Scholar
  35. Feely RA, Sabine CL, Takahashi T, Wanninkhof R. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey: reference materials for oceanic CO2 measurements. Oceanography. 2001;14(4):18–32.CrossRefGoogle Scholar
  36. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B. Evidence for upwelling of corrosive “Acidified” water onto the continental shelf. Science. 2008;320(5882):1490–2.CrossRefGoogle Scholar
  37. Fielding S. The biological validation of ADCP acoustic backscatter through direct comparison with net samples and model predictions based on acoustic-scattering models. ICES J Mar Sci. 2004;61(2):184–200.CrossRefGoogle Scholar
  38. Grey SEC, DeGrandpre MD, Langdon C, Corredor JE. Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochem Cycles. 2012;26:GB3012.  https://doi.org/10.1029/2011GB004114.CrossRefGoogle Scholar
  39. Gurgel KW, Antonischki G, Essen HH, Schlick T. Wellen Radar (WERA): a new ground wave HF radar for remote sensing. Coast Eng. 1999;37:219–34.Google Scholar
  40. Hansell DA, Carlson CA, editors. Biogeochemistry of marine dissolved organic matter. 2nd ed. London: Academic; 2015. 693 pp.Google Scholar
  41. Holliday NP, Yelland MJ, Pascal R, Swail VR, Taylor PK, Griffiths CR, Kent E. Were extreme waves in the Rockall trough the largest ever recorded? Geophys Res Lett. 2006;33(5):L05613.CrossRefGoogle Scholar
  42. Holmes RM, et al. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999;56:1801–8.CrossRefGoogle Scholar
  43. Hu C, Montgomery ET, Schmitt RW, Müller-Karger FE. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res II Top Stud Oceanogr. 2004;51:1151–71.  https://doi.org/10.1016/j.dsr2.2004.04.001.CrossRefGoogle Scholar
  44. Johnson KS, Coletti LJ. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep Sea Res I. 2002;49:1291–305.CrossRefGoogle Scholar
  45. Johnson KS, Jannasch HW, Coletti LJ, Elrod VA, Martz TR, Takeshita Y, Carlson RJ, Connery JG. Deep-Sea DuraFET: a pressure tolerant pH sensor designed for global sensor networks. Anal Chem. 2016;88(6):3249–56.  https://doi.org/10.1021/acs.analchem.5b04653.CrossRefGoogle Scholar
  46. Kirk JTO. Light and photosynthesis in aquatic ecosystems. London/New York: Cambridge University Press; 1994.CrossRefGoogle Scholar
  47. Lagerloef G. Satellite mission Monitors Ocean surface salinity. EOS Trans Am Geophys Union. 2012;93(2519):233–40.CrossRefGoogle Scholar
  48. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles. 2000;14:639–54.CrossRefGoogle Scholar
  49. Lewis EL. The practical salinity scale 1978 and the international equation of state of seawater 1980. IEEE J Ocean Eng. 1980;OE-5(1):3–8.CrossRefGoogle Scholar
  50. Liu Y, et al. Development of Chinese carbon dioxide satellite (TanSat). Vienna: EGU General Assembly; 2013. p. 157–89.Google Scholar
  51. MacIntyre G, Plache B, Lewis MR, Andrea J, Feener S, McLean SD, Johnson KS, Coletti LJ, Jannasch HW. ISUS/SUNA nitrate measurements in networked ocean observing systems. http://www.stccmop.org/files/ISUS-SUNA-Nitrate-Measurment-White-Paper.pdf. Accessed 9/11/2017; 2009.
  52. Marsh HW. Underwater sound and instrumentation. In: Myers JJ, Holm CH, McAllister RF, editors. Handbook of ocean and underwater engineering. Copyright by North American Rockwell Corporation. New York: McGraw Hill; 1969. pp. 3–3 to 3–20.Google Scholar
  53. Martin KI, Walsh ID, Branham CW. Measuring nitrate in Puget sound using optical sensors. Mar Tech Oct. 2017;58:10–113.Google Scholar
  54. Martz TR, Carr JJ, French CR, DeGrandpre MD. A submersible autonomous sensor for spectrophotometric pH measurements of natural waters. Anal Chem. 2003;75(8):1844–50.  https://doi.org/10.1021/ac020568l.CrossRefGoogle Scholar
  55. Martz TR, Connery JG, Johnson KS. Testing the Honeywell Durafet® for seawater pH applications. Limnol Oceanogr Methods. 2010;8:172–84.CrossRefGoogle Scholar
  56. McDougall TJ, Jackett DR, Millero FJ, Pawlowicz R, Barker PM. A global algorithm for estimating absolute salinity. Ocean Sci. 2012;8:1123–34.  https://doi.org/10.5194/os-8-1123-2012. www.ocean-sci.net/8/1123/2012/.CrossRefGoogle Scholar
  57. Millero FJ. Chemical oceanography. 4th ed. Boca Raton: CRC Press Taylor & Francis Group; 2013. 571 p. ISBN 9788-1-4665-1249-8.Google Scholar
  58. Millero FJ, Pierrot D, Lea K, Wanninkhof R, Feely R, Sabine CL, Key RM, Takahashi T. Dissociation constants for carbonic acid determined from field measurements. Deep Sea Res I. 2002;49:1705–23.CrossRefGoogle Scholar
  59. Mills A. Optical oxygen sensors utilizing the luminescence of platinum metals complexes. Platinum Metals Rev. 1997;41(3):115–27.Google Scholar
  60. Müller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R. Pigment distribution in the Caribbean Sea: observations from space. Prog Oceanogr. 1989;23:23–64.CrossRefGoogle Scholar
  61. Müller-Karger FE, Hu C, Andréfouët S, Varela R, Thunell R. The color of the coastal ocean and applications in the solution of research and management problems. In: Miller RL, et al., editors. Remote sensing of coastal aquatic environments. Dordrecht: Springer; 2005. p. 102–27.Google Scholar
  62. National Research Council. Oil in the sea: inputs, fates, and effects. Washington, DC: The National Academies Press; 1985.  https://doi.org/10.17226/314.Google Scholar
  63. NOAA. Edwing R, Next generation water level measurement system NGWLMS site design, preparation, and installation manual. Rockville; 1991. pp. 213.Google Scholar
  64. O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, McClain C. Ocean color algorithms for SeaWiFS. J Geophys Res. 1998;103:24,937–53.  https://doi.org/10.1029/98JC02160.CrossRefGoogle Scholar
  65. Orr JC, Epitalon JM, Gattuso JP. Comparison of ten packages that compute ocean carbonate chemistry. Biogeosciences. 2015;12:1483–510.  https://doi.org/10.5194/bg-12-1483-2015. www.biogeosciences.net/12/1483/2015/.CrossRefGoogle Scholar
  66. Paduan JD, Washburn L. High-frequency radar observations of ocean surface currents. Annu Rev Mar Sci. 2013;5:115–36.CrossRefGoogle Scholar
  67. Park, J, Heitsenrether R, Sweet WV. Water level and wave height estimates at NOAA . Tide stations from acoustic and microwave sensors. Silver Spring: NOAA technical report NOS CO-OPS 075. p. 41, 2014.Google Scholar
  68. Peng G, Garra Z, Halliwell GR, Smedstad OM, Meinen CS, Kourafalou V, Hogan P. Temporal variability of the Florida current transport at 27°N. In: Long JA, Wells DS, editors. Ocean circulation and El Nino: new research. New York: Nova Science Publishers; 2009. p. 119–37.Google Scholar
  69. Pinkel R, Smith JA. Repeat-sequence coding for improved precision of doppler sonar and sodar. J Atmos Ocean Technol. 1992;9:149–63. https://doi.org/10.1175/1520-0426(1992)009<0149:rscfip>2.0.co;2.CrossRefGoogle Scholar
  70. Pope RM, Fry ES. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt. 1997;36(33):8710.CrossRefGoogle Scholar
  71. Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia. 1990;27(1):107.CrossRefGoogle Scholar
  72. Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton: Princeton University Press; 2006. ISBN: 9780691017075. 528 pp.Google Scholar
  73. Schmidt WE, Woodward BT, Millikan KS, Guza RT, Raubenheimer B, Elgar S. A GPS-Tracked Surf Zone Drifter. J Atm Ocean Tech. 2003;20:1070–5.CrossRefGoogle Scholar
  74. Seidel MP, De Grandpre MD, Dickson AG. A sensor for in situ indicator-based measurements of seawater pH. Mar Chem. 2008;109:18–28.CrossRefGoogle Scholar
  75. Sieracki CK, Sieracki ME, Yentsch CS. An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser. 1998;168:285–96.CrossRefGoogle Scholar
  76. Strickland JDH, Parsons TR. A practical handbook of seawater analysis, Bulletin, vol. 167. Ottawa: Fisheries Research Board of Canada; 1972. 310 pp.Google Scholar
  77. Sverdrup HU, Johnson MW, Fleming RH. The oceans, their physics, chemistry, and general biology. New York: Prentice-Hall; 1942. p. c1942. http://ark.cdlib.org/ark:/13030/kt167nb66r/.Google Scholar
  78. Takeshita Y, Martz TR, Johnson KS, Dickson AG. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater. Anal Chem. 2014;86(22):11189–95.  https://doi.org/10.1021/ac502631z.CrossRefGoogle Scholar
  79. Transportation Research Board and National Research Council. Oil in the sea III: inputs, fates, and effects. Washington, DC: The National Academies Press; 2003.  https://doi.org/10.17226/10388.Google Scholar
  80. Werdell PJ, Bailey SW, Franz BA, Harding LW Jr, Feldman GC, McClain CR. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens Environ. 2009;113:1319–30.CrossRefGoogle Scholar
  81. Williams J. Oceanographic instrumentation. Annapolis: United States Naval Institute Press; 1973. 189 pp. ISBN: 0-87021-503–5.Google Scholar
  82. Zeebe RE. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci. 2012;40:141–65.  https://doi.org/10.1146/annurev-earth-042711-105521.CrossRefGoogle Scholar
  83. Zhou Z, Guo L, Osburn CL. Fluorescence EEMs and PARAFAC techniques in the analysis of petroleum components in the water column. In: McGenity T, Timmis K, Nogales B, editors. Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Berlin/Heidelberg: Springer; 2015.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge E. Corredor
    • 1
  1. 1.Department of Marine Sciences (retired)University of Puerto RicoMayagüezPuerto Rico

Personalised recommendations