Advertisement

Remarks About Spatially Structured SI Model Systems with Cross Diffusion

  • Verónica Anaya
  • Mostafa Bendahmane
  • Michel LanglaisEmail author
  • Mauricio Sepúlveda
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)

Abstract

One of the simplest deterministic mathematical model for the spread of an epidemic disease is the so-called SI system made of two Ordinary Differential Equations. It exhibits simple dynamics: a bifurcation parameter \(\mathscr {T}_0\) yielding persistence of the disease when \(\mathscr {T}_0 > 1\), else extinction occurs. A natural question is whether this gentle dynamic can be disturbed by spatial diffusion. It is straightforward to check it is not feasible for linear/nonlinear diffusions. When cross diffusion is introduced for suitable choices of the parameter data set this persistent state of the ODE model system becomes linearly unstable for the resulting initial and no-flux boundary value problem. On the other hand “natural” weak solutions can be defined for this initial and no-flux boundary value problem and proved to exist provided nonlinear and cross diffusivities satisfy some constraints. These constraints are not fully met for the parameter data set yielding instability. A remaining open question is: to which solutions does this apply? Periodic behaviors are observed for a suitable range of cross diffusivities.

References

  1. 1.
    Amann H (1995) Linear and quasilinear parabolic problems, vol I: abstract linear theory. Birkhäuser, Boston, MACrossRefGoogle Scholar
  2. 2.
    Anaya V, Bendahmane M, Langais M, Sepúlveda M (2015) A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion. Comput Math Appl 70(2):132–157MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anaya V, Bendahmane M, Langais M, Sepúlveda M (2015) Pattern formation for a reaction diffusion system with constant and cross diffusion. In: Numerical mathematics and advanced applications—ENUMATH 2013, volume 103 of lecture notes in computational science and engineering. pp 153–161Google Scholar
  4. 4.
    Bendahmane M, Lepoutre T, Marrocco A, Perthame B (2009) Conservative cross diffusions and pattern formation through relaxation. J Math Pures Appl (9) 92(6):651–667MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bier M, Brak B (2015) A simple model to quantitatively account for periodic outbreaks of the measles in the Dutch Bible Belt. Eur Phys J B 88(4):107 (11 p)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Busenberg S, Cooke K (1993) Vertically transmitted diseases, vol 23. Biomathematics. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Capasso V (1993) Mathematical structures of epidemic systems, vol 23. Lecture Notes in Biomathematics. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Charron M, Kluiters G, Langlais M, Seegers H, Baylis M, Ezanno P (2013) Seasonal and spatial heterogeneities in host and vector abundances impact the spatiotemporal spread of bluetongue. Vet Res 44:44CrossRefGoogle Scholar
  9. 9.
    Desvillettes L, Lepoutre T, Moussa A (2014) Entropy, duality and cross diffusion. SIAM J Math Anal 46(1):820–853MathSciNetCrossRefGoogle Scholar
  10. 10.
    Diekmann O, Heesterbeek H, Britton T (2012) Mathematical tools for understanding infectious disease dynamics, Princeton series in theoretical and computational biology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  11. 11.
    Ducrot A, Langlais M, Magal P (2012) Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Commun Pure Appl Anal 11(1):97–113MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fitzgibbon WE, Langlais M (2003) A diffusive S.I.S. model describing the propagation of F.I.V. Commun Appl Anal 7(2–3):387–403MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fitzgibbon WE, Langlais M (2008) Simple models for the transmission of microparasites between host populations living on noncoincident spatial domains, vol 1936 of lecture notes in mathematics. In: Magal P, Ruan S (eds) Structured Population Models in Biology and Epidemiology, vol 1936. Springer, Berlin, pp 115–164CrossRefGoogle Scholar
  14. 14.
    Fitzgibbon WE, Langlais M, Morgan JJ (2004) A reaction-diffusion system on noncoincident spatial domains modeling the circulation of a disease between two host populations. Differ Int Equ 17(7–8):781–802MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gambino G, Lombardo MC, Sammartino M (2012) Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion. Math Comput Simul 82(6):1112–1132MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goh BS (1978) Global stability in a class of prey-predator models. Bull Math Biol 40(4):525–533MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hale JK (1988) Asymptotic behavior of dissipative systems. American Mathematical Society, Providence, RIzbMATHGoogle Scholar
  18. 18.
    Iida M, Mimura M, Ninomiya H (2006) Diffusion, cross-diffusion and competitive interaction. J Math Biol 53(4):617–641MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ladyzhenskaya OA, Solonnikov VA, Ural’ceva NN (1968) Linear and quasi-linear equations of parabolic type. Translations of mathematical monographs. American Mathematical Society, Providence, RICrossRefGoogle Scholar
  20. 20.
    Morgan J (1989) Global existence for semilinear parabolic systems. SIAM J Math Anal 20(5):1128–1144MathSciNetCrossRefGoogle Scholar
  21. 21.
    Morgan J (1990) Boundedness and decay results for reaction-diffusion systems. SIAM J Math Anal 21(5):1172–1189MathSciNetCrossRefGoogle Scholar
  22. 22.
    Murray JD (2007/2003) Mathematical biology, vol I: an introduction, vol II: spatial models and biomedical applications. Springer, New York, 3rd ednGoogle Scholar
  23. 23.
    Okubo A, Levin SA (2002) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  24. 24.
    Pierre M (2003) Weak solutions and supersolutions in \(L^1\) for reaction-diffusion systems. J Evol Equ 3(1):153–168 (dedicated to Philippe Bénilan)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tian C, Lin Z, Pedersen M (2010) Instability induced by cross-diffusion in reaction-diffusion systems. Nonlinear Anal Real World Appl 11(2):1036–1045MathSciNetCrossRefGoogle Scholar
  26. 26.
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc Lond Ser B 237(641):37–72MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yagi A (2010) Abstract parabolic evolution equations and their applications. Springer monographs in mathematics. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Verónica Anaya
    • 1
  • Mostafa Bendahmane
    • 2
  • Michel Langlais
    • 3
    Email author
  • Mauricio Sepúlveda
    • 4
  1. 1.Departamento de Matemática and GIMNAPUniversidad del Bío-BíoConcepciónChile
  2. 2.Institut de Mathématiques de Bordeaux, UMR CNRS 5251Université de BordeauxTALENCE Cedex, BordeauxFrance
  3. 3.BordeauxFrance
  4. 4.Universidad de Concepción, DIM and CI2 MA, Esteban Iturra s/n, Barrio UniversitarioConcepciónChile

Personalised recommendations