Advertisement

Ensemble Interpretation of Quantum Mechanics and the Two-Slit Experiment

  • Glenn F. WebbEmail author
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)

Abstract

An evolution equation model is provided for the two-slit experiment of quantum mechanics. The state variable of the equation is the probability density function of particle positions. The equation has a local diffusion term corresponding to stochastic variation of particles, and a nonlocal dispersion term corresponding to oscillation of particles in the transverse direction perpendicular to their forward motion. The model supports the ensemble interpretation of quantum mechanics and gives descriptive agreement with the Schrödinger equation model of the experiment.

Notes

Acknowledgements

This work is dedicated to William Fitzgibbon and Yuri Kuznetsov in honor of their most valuable contributions to mathematical research and the community of mathematical researchers.

References

  1. 1.
    Allahverdyan AE, Balian R, Nieuwenhuizen TM (2013) Understanding quantum measurement from the solution of dynamical models. Phys Rep 525(1):1–166MathSciNetCrossRefGoogle Scholar
  2. 2.
    Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell-cell adhesion. J Theoret Biol 243(1):98–113MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A (1999) Wave-particle duality of \(C_{60}\) molecules. Nature 401:680–682CrossRefGoogle Scholar
  4. 4.
    Ballentine LE (1970) The statistical interpretation of quantum mechanics. Rev Modern Phys 42(4):358–381CrossRefGoogle Scholar
  5. 5.
    Ballentine LE (1998) Quantum mechanics: a modern development. World Scientific, River Edge, NJCrossRefGoogle Scholar
  6. 6.
    Barrachina RO, Frémont F, Fossez K, Gruyer D, Helaine V, Lepailleur A, Leredde A, Maclot S, Scamps G, Chesnel J-Y (2010) Linewidth oscillations in a nanometer-size double-slit interference experiment with single electrons. Phys Rev A 81:060702CrossRefGoogle Scholar
  7. 7.
    Bassi A, Ghirardi G (2003) Dynamical reduction models. Phys Rep 379(5–6):257–426MathSciNetCrossRefGoogle Scholar
  8. 8.
    Born M (1926) Quantenmechanik der Stoßvorgänge (Quantum mechanics of collision). Z Phys A 38(11–12):803–827CrossRefGoogle Scholar
  9. 9.
    Cetto AM, de la Peña L, Valdés-Hernández A (2015) Specificity of the Schrödinger equation. Quantum Stud Math Found 2(3):275–287MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cresser JD (2011) Quantum physics notes. Macquarie University. http://physics.mq.edu.au/~jcresser/Phys304/Handouts/QuantumPhysicsNotes.pdf
  11. 11.
    de la Peña L, Cetto AM, Valdés Hernández A (2015) The emerging quantum: the physics behind quantum mechanics, chapter The phenomenological stochastic approach: A short route to quantum mechanics, pp 33–66. Springer, ChamGoogle Scholar
  12. 12.
    Dyson J, Gourley SA, Villella-Bressan R, Webb GF (2010) Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion. SIAM J Math Anal 42(4):1784–1804MathSciNetCrossRefGoogle Scholar
  13. 13.
    Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 41(10):777–780CrossRefGoogle Scholar
  14. 14.
    Feynman RP, Leighton RB, Sands M (1965) The Feynman lectures on physics vol 3: Quantum mechanics. Addison-Wesley, Reading, MAGoogle Scholar
  15. 15.
    Ford GW, O’Connell RF (2002) Wave packet spreading: Temperature and squeezing effects with applications to quantum measurement and decoherence. Amer J Phys 70(3):319–324CrossRefGoogle Scholar
  16. 16.
    Friedman A (1969) Partial differential equations. Holt, Rinehart and Winston, New YorkzbMATHGoogle Scholar
  17. 17.
    Gisin N, Percival IC (1993) The quantum state diffusion picture of physical processes. J Phys A 26(9):2245–2260MathSciNetCrossRefGoogle Scholar
  18. 18.
    Goldstein JA (1985) Semigroups of linear operators and applications. Oxford University Press, OxfordzbMATHGoogle Scholar
  19. 19.
    Hongo H, Miyamoto Y, Furuya K, Suhara M (1997) A 40-nm-pitch double-slit experiment of hot electrons in a semiconductor under a magnetic field. Appl Phys Lett 70(1):93–95CrossRefGoogle Scholar
  20. 20.
    Kato T (1966) Perturbation theory for linear operators. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Kocsis S, Braverman B, Ravets S, Stevens MJ, Mirin RP, Shalm LK, Steinberg AM (2011) Observing the average trajectories of single photons in a two-slit interferometer. Science 332(6034):1170–1173CrossRefGoogle Scholar
  22. 22.
    Landé A (1965) New foundations of quantum mechanics. Cambridge University Press, New YorkzbMATHGoogle Scholar
  23. 23.
    Landé A (1973) Quantum mechanics in a new key. Exposition Press, New YorkGoogle Scholar
  24. 24.
    Marcella TV (2002) Quantum interference with slits. Eur J Phys 23(6):615–621CrossRefGoogle Scholar
  25. 25.
    McClendon M, Rabitz H (1988) Numerical simulations in stochastic mechanics. Phys Rev A 37(9):3479–3492MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nairz O, Arndt M, Zeilinger A (2003) Quantum interference experiments with large molecules. Amer J Phys 71(4):319–325CrossRefGoogle Scholar
  27. 27.
    Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A (2015) A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol 77(6):1132–1165MathSciNetCrossRefGoogle Scholar
  28. 28.
    Percival I (1998) Quantum state diffusion. Cambridge University Press, CambridgezbMATHGoogle Scholar
  29. 29.
    Popper KR (1967) Quantum mechanics without “the observer”. In: Bunge M (ed) Quantum Theory and Reality. pp. Springer, Berlin, pp 7–44Google Scholar
  30. 30.
    Przibram K (ed) (1967) Letters on wave mechanics. Philosophical Library, New YorkGoogle Scholar
  31. 31.
    Schilpp PA (ed) (1970) Albert Einstein: philosopher-scientist. Cambridge University Press, LondonzbMATHGoogle Scholar
  32. 32.
    Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2009) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. European J Appl Math 20(1):123–144MathSciNetCrossRefGoogle Scholar
  33. 33.
    Skála J, Čižek L, Kapsa V (2011) Quantum mechanics as applied mathematical statistics. Ann Phys 326(5):1174–1188MathSciNetCrossRefGoogle Scholar
  34. 34.
    Styer DF, Balkin MS, Becker KM, Burns MR, Dudley CE, Forth ST, Gaumer JS, Kramer MA, Oertel DC, Park LH, Rinkoski MT, Smith CT, Wotherspoon TD (2002) Nine formulations of quantum mechanics. Amer J Phys 70(3):288–296MathSciNetCrossRefGoogle Scholar
  35. 35.
    Thaller B (2000) Visual quantum mechanics: selected topics with computer-generated animations of quantum-mechanical phenomena. Springer, New YorkzbMATHGoogle Scholar
  36. 36.
    Tollaksen J, Aharonov Y, Casher A, Kaufherr T, Nussinov S (2010) Quantum interference experiments, modular variables and weak measurements. New J Phys 12:013023CrossRefGoogle Scholar
  37. 37.
    Tonomura A (1998) The quantum world unveiled by electron waves. World Scientific, SingaporeCrossRefGoogle Scholar
  38. 38.
    Tonomura A (2005) Direct observation of thitherto unobservable quantum phenomena by using electrons. PNAS 102(42):14952–14959CrossRefGoogle Scholar
  39. 39.
    Tonomura A, Endo J, Matsuda T, Kawasaki T, Ezawa H (1989) Demonstration of single-electron buildup of an interference pattern. Amer J Phys 57(2):117–120CrossRefGoogle Scholar
  40. 40.
    Webb GF (2011) Event based interpretation of Schrödinger’s equation for the two-slit experiment. Int J Theor Phys 50:3571–3601CrossRefGoogle Scholar
  41. 41.
    Yosida K (1968) Functional analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations