A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra

  • Ricardo H. Nochetto
  • Benjamin StammEmail author
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)


We present a residual-based a posteriori error estimate for the Electric Field Integral Equation (EFIE) on a bounded polyhedron \(\varOmega \) with boundary \(\varGamma \). The EFIE is a variational equation formulated in \({\varvec{H}^{-1/2}_{{{\mathrm{div}}}}(\varGamma )}\). We express the estimate in terms of \(L^2\)-computable quantities and derive global lower and upper bounds (up to oscillation terms).


Electric field integral equation A posteriori error estimation 


  1. 1.
    Alonso A (1996) Error estimators for a mixed method. Numer Math 74(4):385–395MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aurada M, Ferraz-Leite S, Praetorius D (2012) Estimator reduction and convergence of adaptive BEM. Appl Numer Math 62(6):787–801MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beck R, Hiptmair R, Hoppe R, Wohlmuth B (2000) Residual based a posteriori error estimators for eddy current computation. M2AN Math Model Numer Anal 34(1):159–182MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bernardi C, Hecht F (2007) Quelques propriétés d’approximation des éléments finis de Nédélec, application à l’analyse a posteriori. C R Math Acad Sci Paris 344(7):461–466MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brakhage H, Werner P (1965) Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch Math 16:325–329MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Buffa A, Ciarlet P Jr (2001) On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math Methods Appl Sci 24(1):9–30MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Buffa A, Ciarlet P Jr (2001) On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math Methods Appl Sci 24(1):31–48MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Buffa A, Costabel M, Schwab C (2002) Boundary element methods for Maxwell’s equations on non-smooth domains. Numer Math 92(4):679–710MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Buffa A, Costabel M, Sheen D (2002) On traces for \({H}(\text{ curl },\Omega )\) in Lipschitz domains. J Math Anal Appl 276(2):845–867MathSciNetzbMATHGoogle Scholar
  10. 10.
    Buffa A, Hiptmair R (2004) A coercive combined field integral equation for electromagnetic scattering. SIAM J Numer Anal 42(2):621–640MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Buffa A, Hiptmair R (2005) Regularized combined field integral equations. Numer Math 100(1):1–19MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Buffa A, Hiptmair R, von Petersdorff T, Schwab C (2003) Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer Math 95(3):459–485MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Burton AJ, Miller GF (1971) The application of integral equation methods to the numerical solution of some exterior boundary-value problems. Proc Roy Soc London Ser A 323(1553):201–210MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Carstensen C (1996) Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes. Math Comp 65(213):69–84MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carstensen C (1997) An a posteriori error estimate for a first-kind integral equation. Math Comp 66(217):139–155MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carstensen C, Faermann B (2001) Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind. Eng Anal Bound Elem 25(7):497–509zbMATHCrossRefGoogle Scholar
  17. 17.
    Carstensen C, Funken SA, Stephan EP (1996) A posteriori error estimates for \(hp\)-boundary element methods. Appl Anal 61(3–4):233–253MathSciNetzbMATHGoogle Scholar
  18. 18.
    Carstensen C, Maischak M, Praetorius D, Stephan EP (2004) Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer Math 97(3):397–425MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Carstensen C, Maischak M, Stephan EP (2001) A posteriori error estimate and \(h\)-adaptive algorithm on surfaces for Symm’s integral equation. Numer Math 90(2):197–213MathSciNetzbMATHGoogle Scholar
  20. 20.
    Carstensen C, Praetorius D (2012) Convergence of adaptive boundary element methods. J Integr Eqn Appl 24(1):1–23MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Carstensen C, Stephan EP (1995) A posteriori error estimates for boundary element methods. Math Comp 64(210):483–500MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cascon JM, Kreuzer C, Nochetto RH, Siebert KG (2008) Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal 46(5):2524–2550MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cascon JM, Nochetto RH, Siebert KG (2007) Design and convergence of AFEM in \(H(\rm {div})\). Math Models Methods Appl Sci 17(11):1849–1881MathSciNetzbMATHGoogle Scholar
  24. 24.
    Christiansen SH (2004) Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math Comp 73(245):143–167MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Clément P (1975) Approximation by finite element functions using local regularization. Rev Française Automat Informat Recherche Opérationnelle Sér RAIRO Anal Numér 9(R–2):77–84MathSciNetzbMATHGoogle Scholar
  26. 26.
    Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, vol 93 of applied mathematical sciences, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  27. 27.
    Demlow A, Dziuk G (2007) An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J Numer Anal 45(1):421–442MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Erath C, Ferraz-Leite S, Funken S, Praetorius D (2009) Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl Numer Math 59(11):2713–2734MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ern A, Guermond J-L (2004) Theory and practice of finite elements, vol 159. Applied mathematical sciences. Springer, New YorkzbMATHCrossRefGoogle Scholar
  30. 30.
    Feischl M, Karkulik M, Melenk JM, Praetorius D (2013) Quasi-optimal convergence rate for an adaptive boundary element method. SIAM J Numer Anal 51(2):1327–1348MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ferraz-Leite S, Ortner C, Praetorius D (2010) Convergence of simple adaptive Galerkin schemes based on \(h-h/2\) error estimators. Numer Math 116(2):291–316MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ferraz-Leite S, Praetorius D (2008) Simple a posteriori error estimators for the \(h\)-version of the boundary element method. Computing 83(4):135–162MathSciNetzbMATHGoogle Scholar
  33. 33.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Greengard L, Rokhlin V (1997) A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer 6:229–269MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Hackbusch W, Nowak ZP (1989) On the fast matrix multiplication in the boundary element method by panel clustering. Numer Math 54(4):463–491MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hackbush W, Sauter SA (1993) On the efficient use of the Galerkin method to solve Fredholm integral equations. Appl Math 38(4–5):301–322 (Proceedings of ISNA ’92 – International Symposium on Numerical Analysis, Part I (Prague, 1992))MathSciNetGoogle Scholar
  37. 37.
    Hiptmair R, Schwab C (2002) Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J Numer Anal 40(1):66–86MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Leis R (1965) Zur Dirichletschen Randwertaufgabe des Aussenraumes der Schwingungsgleichung. Math Z 90(3):205–211MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Leydecker F, Maischak M, Stephan EP, Teltscher M (2010) Adaptive FE-BE coupling for an electromagnetic problem in \(\mathbb{R}^3\) - A residual error estimator. Math Methods Appl Sci 33(18):2162–2186MathSciNetzbMATHGoogle Scholar
  40. 40.
    Nochetto RH, Siebert KG, Veeser A (2009) Theory of adaptive finite element methods: an introduction. Multiscale. Nonlinear and Adaptive Approximation. Springer, Berlin, pp 409–542Google Scholar
  41. 41.
    Nochetto RH, von Petersdorff T, Zhang C-S (2010) A posteriori error analysis for a class of integral equations and variational inequalities. Numer Math 116(3):519–552MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Nowak ZP, Hackbusch W (1986) Complexity of the method of panels. In: Marchuk G (ed) Computational processes and systems, No. 6. Nauka, Moscow, pp 233–244 (in Russian)Google Scholar
  43. 43.
    Panich OI (1965) On the solubility of exterior boundary-value problems for the wave equation and for a system of Maxwell’s equations. Uspekhi Mat. Nauk 20:1(121):221–226MathSciNetGoogle Scholar
  44. 44.
    Raviart P-A, Thomas JM (1977) A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (Proceedings of Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), vol 606 of lecture notes in mathematics. Springer, Berlin, pp 292–315Google Scholar
  45. 45.
    Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comput Phys 60(2):187–207MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Sauter SA, Schwab C (2011) Boundary element methods, vol 39. Springer series in computational mathematics. Springer, BerlinGoogle Scholar
  47. 47.
    Tartar L (2007) An introduction to Sobolev spaces and interpolation spaces, vol 3. Lecture Notes of the Unione Matematica Italiana. Springer, BerlinGoogle Scholar
  48. 48.
    Teltscher M, Stephan EP, Maischak M (2003) A residual error estimator for an electromagnetic FEM-BEM coupling problem in \(\mathbb{R}^3\). Technical report, Institut für Angewandte Mathematik, Universität HannoverGoogle Scholar
  49. 49.
    Verfürth R (1998) A posteriori error estimators for convection-diffusion equations. Numer Math 80(4):641–663MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Mathematics DepartmentCenter for Computational Engineering, RWTH Aachen UniversityAachenGermany

Personalised recommendations