Advertisement

Dual-Primal Isogeometric Tearing and Interconnecting Methods

  • Christoph HoferEmail author
  • Ulrich Langer
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 47)

Abstract

This paper generalizes the Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) method, that is well established as parallel solver for large-scale systems of finite element equations, to linear algebraic systems arising from the Isogemetric Analysis of elliptic diffusion problems with heterogeneous diffusion coefficients in two- and three-dimensional multipatch domains with \(C^0\) smoothness across the patch interfaces. We consider different scalings, and derive the expected polylogarithmic bound for the condition number of the preconditioned systems. The numerical results confirm these theoretical bounds, and show incredibly robustness with respect to large jumps in the diffusion coefficient across the interfaces.

Notes

Acknowledgements

This research work was supported by the National Research Network (NFN) “Geometry + Simulation” funded by the Austrian Science Fund (FWF) under the grand S117-03.

References

  1. 1.
    Apostolatos A, Schmidt R, Wüchner R, Bletzinger K-U (2014) A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Internat J Numer Methods Eng 97(7):473–504MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazilevs Y, Beirão da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes. Math Models Methods Appl Sci 16(7):1031–1090MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beirão da Veiga L, Buffa A, Sangalli G, Vázquez R (2014) Mathematical analysis of variational isogeometric methods. Acta Numer 23:157–287MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beirão da Veiga L, Chinosi C, Lovadina C, Pavarino LF (2010) Robust BDDC preconditioners for Reissner-Mindlin plate bending problems and MITC elements. SIAM J Numer Anal 47(6):4214–4238MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beirão da Veiga L, Cho D, Pavarino LF, Scacchi S (2012) Overlapping Schwarz methods for isogeometric analysis. SIAM J Numer Anal 50(3):1394–1416MathSciNetCrossRefGoogle Scholar
  6. 6.
    Beirão Da Veiga L, Cho D, Pavarino LF, Scacchi S (2013) BDDC preconditioners for isogeometric analysis. Math Models Methods Appl Sci 23(6):1099–1142MathSciNetCrossRefGoogle Scholar
  7. 7.
    Beirão da Veiga L, Cho D, Pavarino LF, Scacchi S (2013) Isogeometric Schwarz preconditioners for linear elasticity systems. Comput Methods Appl Mech Eng 253:439–454MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beirão Da Veiga L, Pavarino LF, Scacchi S, Widlund OB, Zampini S (2014) Isogeometric BDDC preconditioners with deluxe scaling. SIAM J Sci Comput 36(3):A1118–A1139MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bercovier M, Soloveichik I (2015) Overlapping non-matching meshes domain decomposition method in isogeometric analysis. arxiv:1502.03756 [math.NA]
  10. 10.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, USAGoogle Scholar
  11. 11.
    Dohrmann CR (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25(1):246–258MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dohrmann CR, Widlund OB (2013) Some recent tools and a BDDC algorithm for 3D problems in \(H(\operatorname{curl})\). In: Bank R, Holst M, Widlund O, Xu J (eds) Domain decomposition methods in science and engineering XX, vol 91 of Lect Notes Comput Sci Eng. Springer, Berlin, pp 15–25Google Scholar
  13. 13.
    Dryja M, Galvis J, Sarkis M (2013) A FETI-DP preconditioner for a composite finite element and discontinuous Galerkin method. SIAM J Numer Anal 51(1):400–422MathSciNetCrossRefGoogle Scholar
  14. 14.
    Eigen v3. http://eigen.tuxfamily.org, 2010. Started by B. Jacob (founder) and G. Guennebaud (guru)
  15. 15.
    Farhat C, Lesoinne M, Le Tallec P, Pierson K, Rixen D (2001) FETI-DP: a dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Internat J Numer Methods Eng 50(7):1523–1544CrossRefGoogle Scholar
  16. 16.
    Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227MathSciNetCrossRefGoogle Scholar
  17. 17.
    G+Smo (Geometry + Simulation Modules) v0.8.1. http://gs.jku.at/gismo, 2015. Coordinator and maintainer A. Mantzaflaris
  18. 18.
    Hesch C, Betsch P (2012) Isogeometric analysis and domain decomposition methods. Comput Methods Appl Mech Eng 213–216:104–112MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hofer C, Langer U (2017) Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations. Comput Methods Appl Mech Engrg 316:2–21Google Scholar
  20. 20.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jüttler B, Langer U, Mantzaflaris A, Moore SE, Zulehner W (2014) Geometry + Simulation modules: implementing isogeometric analysis. Proc Appl Math Mech 14(1):961–962CrossRefGoogle Scholar
  22. 22.
    Klawonn A, Rheinbach O (2007) Inexact FETI-DP methods. Int J Numer Methods Eng 69(2):284–307MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kleiss S, Pechstein C, Jüttler B, Tomar S (2012) IETI—isogeometric tearing and interconnecting. Comput Methods Appl Mech Eng 247–248:201–215MathSciNetCrossRefGoogle Scholar
  24. 24.
    Langer U, Moore SE (2016) Discontinuous Galerkin isogeometric analysis of elliptic PDEs on surfaces. In: Dickopf T, Gander M, Halpern L, Krause R, Pavarino LF (eds) Domain decomposition methods in science and engineering XXII, vol 104 of Lect Notes Comput Sci Eng. Springer, Berlin, pp 319–326Google Scholar
  25. 25.
    Langer U, Toulopoulos I (2015) Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems. Comput Vis Sci 17(5):217–233MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li J, Widlund OB (2007) On the use of inexact subdomain solvers for BDDC algorithms. Comput Methods Appl Mech Eng 196(8):1415–1428MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mandel J, Dohrmann CR, Tezaur R (2005) An algebraic theory for primal and dual substructuring methods by constraints. Appl Numer Math 54(2):167–193MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pechstein C (2013) Finite and boundary element tearing and interconnecting solvers for multiscale problems. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Schumaker LL (2007) Spline functions: basic theory, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Toselli A, Widlund OB (2005) Domain decomposition methods—algorithms and theory. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of SciencesLinzAustria

Personalised recommendations