Advertisement

Melanoma pp 105-114 | Cite as

The Genetic Evolution of Melanoma

  • Katja Harbst
  • Göran Jönsson
Chapter

Abstract

Melanoma tumors are driven by a hyperactivated mitogen-activated protein kinase (MAPK) signalling pathway, and therefore can generally be classified by mutations within the B-Raf proto-oncogene (BRAF), RAS family of proto-oncogenes, neurofibromin 1 (NF1), or other genes. At the transcriptional level, several genetic classifications of melanoma have converged on the distinction between melanogenesis (previously microphthalmia) associated transcription factor (MITF)-low and MITF-high phenotypes and expression of immune-related genes. Mutation-based melanoma subtypes are not prognostic, nor are they associated to transcriptomic subtypes, which are in turn prognostic. Intratumoral heterogeneity of melanoma cells adds another layer of complexity, with recent findings of mutational and transcriptional heterogeneity within melanoma tumors. Furthermore, multiple genetic changes have been associated with different stages of melanoma progression. Mutational signatures may also be differentiated at early and late stages of melanoma progression.

Keywords

Melanoma Genomic Heterogeneity Subtype classification Progression Evolution 

Abbreviations

cAMP

Cyclic adenosine monophosphate

CDK

Cyclin-dependent kinase

COSMIC

Catalogue of Somatic Mutations in Cancer

CSD

Chronic sun damage

DNA

Deoxyribonucleic acid

EMA

European Medicines Agency

FDA

US Food and Drug Administration

ITH

Intratumor heterogeneity

MAPK

Mitogen-activated protein kinase

TCGA

The Cancer Genome Atlas

UVB

Ultraviolet B radiation

UVR

Ultraviolet radiation

References

  1. 1.
    Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.  https://doi.org/10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
  2. 2.
    Cirenajwis H, Lauss M, Ekedahl H, Torngren T, Kvist A, Saal LH, et al. NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol. 2017;11(4):438–51.  https://doi.org/10.1002/1878-0261.12050.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.  https://doi.org/10.1038/nature00766. nature00766 [pii].CrossRefPubMedGoogle Scholar
  4. 4.
    Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339(6122):957–9.  https://doi.org/10.1126/science.1229259.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.  https://doi.org/10.1126/science.1230062.CrossRefPubMedGoogle Scholar
  6. 6.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.  https://doi.org/10.1038/nature12477.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406.  https://doi.org/10.1038/ng.3525.CrossRefPubMedGoogle Scholar
  8. 8.
    Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.  https://doi.org/10.1016/j.cell.2014.09.050.CrossRefGoogle Scholar
  9. 9.
    Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.  https://doi.org/10.1038/nature11252.CrossRefGoogle Scholar
  10. 10.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefPubMedGoogle Scholar
  11. 11.
    Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345–58.  https://doi.org/10.1038/nrc.2016.37.CrossRefPubMedGoogle Scholar
  12. 12.
    Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.  https://doi.org/10.1056/NEJMoa1502583.CrossRefPubMedGoogle Scholar
  13. 13.
    Harbst K, Lauss M, Cirenajwis H, Isaksson K, Rosengren F, Torngren T, et al. Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma. Cancer Res. 2016;76(16):4765–74.  https://doi.org/10.1158/0008-5472.CAN-15-3476.CrossRefPubMedGoogle Scholar
  14. 14.
    Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature. 2000;406(6795):536–40.  https://doi.org/10.1038/35020115.CrossRefPubMedGoogle Scholar
  15. 15.
    Jonsson G, Busch C, Knappskog S, Geisler J, Miletic H, Ringner M, et al. Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome. Clin Cancer Res. 2010;16(13):3356–67.  https://doi.org/10.1158/1078-0432.CCR-09-2509.CrossRefPubMedGoogle Scholar
  16. 16.
    Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, et al. Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget. 2015;6(14):12297–309.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harbst K, Staaf J, Lauss M, Karlsson A, Masback A, Johansson I, et al. Molecular profiling reveals low- and high-grade forms of primary melanoma. Clin Cancer Res. 2012;18(15):4026–36.  https://doi.org/10.1158/1078-0432.CCR-12-0343.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lauss M, Nsengimana J, Staaf J, Newton-Bishop J, Jonsson G. Consensus of melanoma gene expression subtypes converges on biological entities. J Invest Dermatol. 2016;136(12):2502–5.  https://doi.org/10.1016/j.jid.2016.05.119.CrossRefPubMedGoogle Scholar
  19. 19.
    Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011;480(7375):94–8.  https://doi.org/10.1038/nature10539.CrossRefPubMedGoogle Scholar
  20. 20.
    Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature. 2011;480(7375):99–103.  https://doi.org/10.1038/nature10630.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wellbrock C, Arozarena I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res. 2015;28(4):390–406.  https://doi.org/10.1111/pcmr.12370.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res. 2006;19(4):290–302.  https://doi.org/10.1111/j.1600-0749.2006.00322.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Widmer DS, Cheng PF, Eichhoff OM, Belloni BC, Zipser MC, Schlegel NC, et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 2012;25(3):343–53.  https://doi.org/10.1111/j.1755-148X.2012.00986.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Howlin J, Cirenajwis H, Lettiero B, Staaf J, Lauss M, Saal L, et al. Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours. Peer J. 2015;3:e788.  https://doi.org/10.7717/peerj.788.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–96.  https://doi.org/10.1126/science.aad0501.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med. 2006;4:50.  https://doi.org/10.1186/1479-5876-4-50.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bogunovic D, O'Neill DW, Belitskaya-Levy I, Vacic V, Yu YL, Adams S, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci U S A. 2009;106(48):20429–34.  https://doi.org/10.1073/pnas.0905139106.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm SJ, Pianova S, et al. BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol. 2013;133(2):509–17.  https://doi.org/10.1038/jid.2012.283.CrossRefPubMedGoogle Scholar
  29. 29.
    Maio M. Melanoma as a model tumour for immuno-oncology. Ann Oncol. 2012;23(Suppl 8):viii10–viii4.  https://doi.org/10.1093/annonc/mds257.CrossRefPubMedGoogle Scholar
  30. 30.
    Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tuting T. Type I interferon-associated recruitment of cytotoxic lymphocytes: a common mechanism in regressive melanocytic lesions. Am J Clin Pathol. 2005;124(1):37–48.  https://doi.org/10.1309/4EJ9KL7CGDENVVLE.CrossRefPubMedGoogle Scholar
  31. 31.
    Redondo P, Del Olmo J. Images in clinical medicine. Vitiligo and cutaneous melanoma. N Engl J Med. 2008;359(3):e3.  https://doi.org/10.1056/NEJMicm053764.CrossRefPubMedGoogle Scholar
  32. 32.
    Nordlund JJ, Kirkwood JM, Forget BM, Milton G, Albert DM, Lerner AB. Vitiligo in patients with metastatic melanoma: a good prognostic sign. J Am Acad Dermatol. 1983;9(5):689–96.CrossRefPubMedGoogle Scholar
  33. 33.
    Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73–86.  https://doi.org/10.1038/nri3789.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thor Straten P, Garrido F. Targetless T cells in cancer immunotherapy. J Immunother Cancer. 2016;4:23.  https://doi.org/10.1186/s40425-016-0127-z.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–8.  https://doi.org/10.1038/nbt.3344.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI, et al. Vitiligo-like depigmentation in patients with stage III–IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015;33(7):773–81.  https://doi.org/10.1200/JCO.2014.57.4756.CrossRefPubMedGoogle Scholar
  37. 37.
    Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genet. 2008;1:13.  https://doi.org/10.1186/1755-8794-1-13.CrossRefGoogle Scholar
  38. 38.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.  https://doi.org/10.1056/NEJMoa1113205.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.  https://doi.org/10.1038/ng.2891.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45.  https://doi.org/10.1038/ng.3315.CrossRefPubMedGoogle Scholar
  41. 41.
    Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB, et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet. 2015;47(4):367–72.  https://doi.org/10.1038/ng.3221.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Murugaesu N, Wilson GA, Birkbak NJ, Watkins TB, McGranahan N, Kumar S, et al. Tracking the genomic evolution of esophageal adenocarcinoma through neoadjuvant chemotherapy. Cancer Discov. 2015;5(8):821–31.  https://doi.org/10.1158/2159-8290.CD-15-0412.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol. 2013;231(1):21–34.  https://doi.org/10.1002/path.4230.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9.  https://doi.org/10.1126/science.1256930.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science. 2014;346(6206):251–6.  https://doi.org/10.1126/science.1253462.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21.  https://doi.org/10.1056/NEJMoa1616288.CrossRefPubMedGoogle Scholar
  47. 47.
    Morris LG, Riaz N, Desrichard A, Senbabaoglu Y, Hakimi AA, Makarov V, et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 2016;7(9):10051–63.  https://doi.org/10.18632/oncotarget.7067.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Li Q, Wennborg A, Aurell E, Dekel E, Zou JZ, Xu Y, et al. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape. Proc Natl Acad Sci U S A. 2016;113(10):2672–7.  https://doi.org/10.1073/pnas.1519210113.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M, et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 2011;24(4):631–42.  https://doi.org/10.1111/1755-148X.2011.00871.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68(3):650–6.  https://doi.org/10.1158/0008-5472.CAN-07-2491.CrossRefPubMedGoogle Scholar
  51. 51.
    Cleary AS, Leonard TL, Gestl SA, Gunther EJ. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature. 2014;508(7494):113–7.  https://doi.org/10.1038/nature13187.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C, et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun. 2014;5:5712.  https://doi.org/10.1038/ncomms6712.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4(7):816–27.  https://doi.org/10.1158/2159-8290.CD-13-0424.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Harbst K, Lauss M, Cirenajwis H, Winter C, Howlin J, Torngren T, et al. Molecular and genetic diversity in the metastatic process of melanoma. J Pathol. 2014;233(1):39–50.  https://doi.org/10.1002/path.4318.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katja Harbst
    • 1
  • Göran Jönsson
    • 1
  1. 1.Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and PathologyLund UniversityLundSweden

Personalised recommendations