Advertisement

Melanoma pp 567-576 | Cite as

Current Immunotherapy of Melanoma

  • Kimberly Loo
  • Clinton Wu
  • Adil Daud
Chapter

Abstract

The immune system is intimately and comprehensively engaged in controlling and ultimately allowing the escape of cancer and specifically melanoma. In order to escape control, a variety of immune checkpoint are co-opted by melanoma. We describe the history of immune therapy in melanoma up to the present and highlight some of the areas of controversy and agreement. The development of accurate biomarkers has been an emerging field and has provided the impetus for the development of combination and sequential immunotherapies. Intratumoral immunotherapy holds great promise in melanoma specifically for patients with T-cell non-infiltrated or immune-resistant of “cold” tumors. We also review the latest developments in adjuvant and combination immunotherapy as well as the emerging field of immune-related adverse events which are unique to checkpoint inhibitors and need specific strategies for management.

Keywords

Melanoma Immunotherapy Intratumoral immunotherapy Adjuvant immunotherapy Combination immunotherapy 

References

  1. 1.
    Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(4):620–32.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Daud A. Current and emerging perspectives on immunotherapy for melanoma. Semin Oncol. 2015;42(Suppl 3):S3–S11.CrossRefPubMedGoogle Scholar
  3. 3.
    Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017. [published online ahead of print: April 4, 2017];14(8):463–82.  https://doi.org/10.1038/nrclinonc.2017.43.CrossRefPubMedGoogle Scholar
  4. 4.
    Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment. Anti-Cancer Drugs. 2016;27(4):269–77.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Říhová B, Šťastný M. History of immuno-therapy - from coley toxins to check-points of the immune reaction. Klin Onkol. 2015;28(Suppl 4):4S8–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci. 1957;147(927):258–67.CrossRefGoogle Scholar
  7. 7.
    Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.CrossRefGoogle Scholar
  8. 8.
    Atkins MB, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(7):2105–16.CrossRefGoogle Scholar
  9. 9.
    Harper K, et al. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147(3):1037–44.PubMedGoogle Scholar
  10. 10.
    Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183(6):2533–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Krummel MF, Allison JP. Pillars Article: CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. The Journal of Experimental Medicine. 1995. 182: 459–465. J Immunol. 2011;187(7):3459–65.PubMedGoogle Scholar
  13. 13.
    Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weber JS, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(36):5950–6.CrossRefGoogle Scholar
  15. 15.
    Wolchok JD, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics. 1994;23(3):704–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Agata Y, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brahmer JR, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(19):3167–75.CrossRefGoogle Scholar
  21. 21.
    Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving Nivolumab. J Clin Oncol. 2014;32(10):1020–30.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Spranger S, Sivan A, Corrales L, Gajewski TF. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol. 2016;130:75–93.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol. 2007;19(2):203–8.CrossRefPubMedGoogle Scholar
  25. 25.
    O’Sullivan T, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209(10):1869–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Matsushita H, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Abbas AK, Janeway CA. Immunology: improving on nature in the twenty-first century. Cell. 2000;100(1):129–38.CrossRefPubMedGoogle Scholar
  28. 28.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Pitt JM, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44(6):1255–69.CrossRefPubMedGoogle Scholar
  30. 30.
    Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fricke I, Gabrilovich DI. Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Investig. 2006;35(3–4):459–83.CrossRefGoogle Scholar
  32. 32.
    Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP. Dendritic cells in antitumor immune responses: II dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol. 1996;170(1):111–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Renner K, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol. 2017;8:248.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Feng Z, et al. Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma. J Immunother Cancer. 2015;3:47.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26(5):638–52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Daud AI, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016. [published online ahead of print: August 15, 2016];126(9):3447–52.  https://doi.org/10.1172/JCI87324.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Loo K, et al. Partially exhausted tumor-infiltrating lymphocytes predict response to combination immunotherapy [Internet]. JCI Insight. 2017;2(14):93433.  https://doi.org/10.1172/jci.insight.93433.CrossRefPubMedGoogle Scholar
  39. 39.
    Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–7.  https://doi.org/10.1200/JCO.2012.41.6750.CrossRefPubMedGoogle Scholar
  41. 41.
    Homet Moreno B, Parisi G, Robert L, Ribas A. Anti-PD-1 therapy in melanoma. Semin Oncol. 2015;42(3):466–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hamid O, et al. Safety and tumor responses with Lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. [published online ahead of print: June 2, 2013].  https://doi.org/10.1056/NEJMoa1305133.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Robert C, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefGoogle Scholar
  45. 45.
    Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ribas A, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Robert C, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. [published online ahead of print: July 14, 2014]. 2014;384(9948):1109–17.  https://doi.org/10.1016/S0140-6736(14)60958-2.CrossRefPubMedGoogle Scholar
  48. 48.
    Ribas A, et al. Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients (pts) with melanoma (MEL). [Internet]. J Clin Oncol. 2014;32(5s(suppl)):abstr LBA9000. http://meetinglibraryascoorg/content/133842-144. Accessed 20 Nov 2014CrossRefGoogle Scholar
  49. 49.
    Daud AI, et al. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody Pembrolizumab in melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(34):4102–9.CrossRefGoogle Scholar
  50. 50.
    Wolchok JD, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Munn DH. Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol. 2006;18(2):220–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Platten M, Litzenburger U, Wick W. The aryl hydrocarbon receptor in tumor immunity. Oncoimmunology. 2012;1(3):396–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bessede A, et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature. 2014;511(7508):184–90.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Platten M, von Knebel Doeberitz N, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2014;5:673.PubMedGoogle Scholar
  55. 55.
    Schulte KW, Green E, Wilz A, Platten M, Daumke O. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25(7):1025–1033.e3.CrossRefPubMedGoogle Scholar
  56. 56.
    Gangadhar TC, Hamid O, Smith D, et al. Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer. 2015;3(Suppl 2):07.  https://doi.org/10.1186/2051-1426-3-S2-O7.CrossRefGoogle Scholar
  57. 57.
    Daud A, et al. Intratumoral electroporation of plasmid interleukin-12: efficacy and biomarker analyses from a phase 2 study in melanoma (OMS-I100). J Transl Med. 2015;13:2068.Google Scholar
  58. 58.
    Cha E, Daud A. Plasmid IL-12 electroporation in melanoma. Hum Vaccin Immunother. 2012;8(11):1734–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Harrington KJ, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the phase III OPTiM trial. OncoTargets Ther. 2016;9:7081–93.CrossRefGoogle Scholar
  60. 60.
    Andtbacka RHI, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(25):2780–8.CrossRefGoogle Scholar
  61. 61.
    Andtbacka RHI, et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann Surg Oncol. 2016;23(13):4169–77.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ribas A, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–1119.e10.CrossRefGoogle Scholar
  63. 63.
    Tarhini AA, Kirkwood JM. Clinical and immunologic basis of interferon therapy in melanoma. Ann N Y Acad Sci. 2009;1182:47–57.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kirkwood JM, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial EST 1684. J Clin Oncol Off J Am Soc Clin Oncol. 1996;14(1):7–17.CrossRefGoogle Scholar
  65. 65.
    Kirkwood JM, et al. High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(12):2444–58.CrossRefGoogle Scholar
  66. 66.
    Kirkwood JM, et al. High-dose interferon alfa-2b does not diminish antibody response to GM2 vaccination in patients with resected melanoma: results of the Multicenter Eastern Cooperative Oncology Group Phase II Trial E2696. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(5):1430–6.CrossRefGoogle Scholar
  67. 67.
    Hoshimoto S, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Overwijk WW. Cancer vaccines in the era of checkpoint blockade: the magic is in the adjuvant. Curr Opin Immunol. 2017;47:103–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Eggermont AMM, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30.CrossRefPubMedGoogle Scholar
  70. 70.
    Weber J, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. [published online ahead of print: September 10, 2017]. 2017;377:1824–35.  https://doi.org/10.1056/NEJMoa1709030.CrossRefPubMedGoogle Scholar
  71. 71.
    Loo K, Daud A. Emerging biomarkers as predictors to anti-PD1/PD-L1 therapies in advanced melanoma. Immunotherapy. 2016;8(7):775–84.CrossRefPubMedGoogle Scholar
  72. 72.
    Loo K, et al. Novel T cell exhaustion marker to predict monotherapy PD-1 compared to combination CTLA-4 and PD-1 response in melanoma. J Clin Oncol. 2016;34(15 Suppl):9520.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hematology/Oncology, MelanomaUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Melanoma OncologyUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of MedicineUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations