Melanoma pp 549-565 | Cite as

Adoptive Cell Therapy for Melanoma

  • Jane Mills
  • Phillip Darcy
  • David E. GyorkiEmail author


Melanoma is a highly immunogenic cancer, and along with the combination of poor clinical outcomes and treatments with limited efficacy, these attributes have made metastatic melanoma an ideal platform to study immune-based therapies. Adoptive cell therapy (ACT) is as a highly effective personalized cancer treatment, utilizing the natural effector functions of T cells targeting tumor antigens.

This chapter will concentrate on the development and efficacy of ACT in melanoma. The chapter reviews the role of the immune system in melanoma, the identification and targeting of specific tumor antigens, and the mechanisms by which tumor cells may evade detection and eradication. The utility of tumor infiltrating lymphocyte (TIL) based ACT is described, outlining its development, success, modifications, and limitations. Finally the chapter describes T cell engineering and the development and use of chimeric antigen receptors (CAR) as an alternative strategy in this exciting and rapidly expanding area of immuno-oncology.


Melanoma Adoptive cell therapy Tumor infiltrating lymphocyte Immunotherapy Chimeric antigen receptor 


  1. 1.
    Schatton T, Scolyer RA, Thompson JF, Mihm MC. Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol. Totowa, NJ: Humana Press (Chapter 16). 2014;1102:287–324.CrossRefPubMedGoogle Scholar
  2. 2.
    Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2012;6(2):123–33.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Friedman KM, DeVillier LE, Feldman SA, Rosenberg SA, Dudley ME. Augmented lymphocyte expansion from solid tumors with engineered cells for Costimulatory enhancement. J Immunother. 2011;34(9):651–61.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. American Association for the Advancement of Science. 2015;348(6230):62–8.CrossRefGoogle Scholar
  5. 5.
    Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt's essential immunology. Chichester, West Sussex; Hoboken, NJ: Wiley Blackwell; 2011.Google Scholar
  6. 6.
    Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Acuto O, Mise-Omata S, Mangino G, Michel F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol Rev. 2003;192:21–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng LE, Ohlén C, Nelson BH, Greenberg PD. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc Natl Acad Sci U S A. 2002;99(5):3001–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Janeway CA, Travers P, Walport M, Capra JD. Immunobiology: the immune system in health and disease. London: Current Biology Publications; 1999.Google Scholar
  10. 10.
    Phan GQ, Rosenberg SA. Adoptive cell transfer for patients with metastatic melanoma: the potential and promise of cancer immunotherapy. Cancer Control. 2013;20(4):289–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefGoogle Scholar
  13. 13.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29(1):235–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Fourcade J, Zarour HM. Strategies to reverse melanoma-induced T-cell dysfunction. Clin Dermatol. 2013;31(3):251–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195(11):5117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Knuth A, Wölfel T, Klehmann E, Boon T. Meyer zum Büschenfelde KH. Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A. 1989;86(8):2804–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Stevanovic S. Identification of tumor-associated T-cell epitopes for vaccine development. Nat Rev Cancer. 2002;2(7):514–20.CrossRefPubMedGoogle Scholar
  18. 18.
    van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Molecular diagnostics for melanoma. 2016:1–711.Google Scholar
  20. 20.
    Katz KA, Jonasch E, Hodi FS, Soiffer R, Kwitkiwski K, Sober AJ, et al. Melanoma of unknown primary: experience at Massachusetts General Hospital and Dana-Farber Cancer Institute. Melanoma Res. 2005;15(1):77–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Gyorki DE, Callahan M, Wolchok JD, Ariyan CE. The delicate balance of melanoma immunotherapy. Clin Trans Immunol. 2013;2(8):e5–8.CrossRefGoogle Scholar
  22. 22.
    MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348(6):567–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.CrossRefGoogle Scholar
  24. 24.
    MacCarty WC. Longevity in cancer: a study of 293 cases. Ann Surg. 1922;76(2):238–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hershkovitz L, Schachter J, Treves AJ, Besser MJ. Focus on adoptive T cell transfer trials in melanoma. Clin Dev Immunol. 2010;2010:260267.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.CrossRefGoogle Scholar
  27. 27.
    Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86(15):1159–66.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. Scholar
  29. 29.
    Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. American Association for Cancer Research. 2012;18(24):6758–70.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Itzhaki O, Hovav E, Ziporen Y, Levy D, Kubi A, Zikich D, et al. Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother. 2011;34(2):212–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. Royal Australasian College of Surgeons (RACS). 2014;257(1):56–71.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. Royal Australasian College of Surgeons (RACS). 2015;348(6230):62–8.CrossRefGoogle Scholar
  33. 33.
    Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM. Characterization and Comparison of ‘Standard’ and ‘Young’ Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy at a Danish Translational Research Institution. Scand J Immunol. Blackwell Publishing Ltd. 2012;75(2):157–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Fousek K, Ahmed N. The evolution of T-cell therapies for solid malignancies. Clin Cancer Res. 2015;21(15):3384–92.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bernatchez C, Radvanyi LG, Hwu P. Advances in the treatment of metastatic melanoma: adoptive T-cell therapy. Semin Oncol. 2012;39(2):215–26.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.CrossRefGoogle Scholar
  37. 37.
    Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol. 1988;6(5):839–53.CrossRefPubMedGoogle Scholar
  38. 38.
    Dudley ME, Gross CA, Somerville RPT, Hong Y, Schaub NP, Rosati SF, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013;31(17):2152–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu R, Forget M-A, Chacon J, Bernatchez C, Haymaker C, Chen JQ, et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J. 2012;18(2):160–75.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Goff SL, Dudley ME, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN, et al. Randomized, prospective evaluation comparing intensity of Lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389–97.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015;8(4):337–50.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–40.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, et al. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol. 2006;3(12):668–81.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM, et al. Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother. 2010;33(8):840–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. American Association for Cancer Research. 2010;16(24):6122–31.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sim GC, Chacon J, Haymaker C, Ritthipichai K, Singh M, Hwu P, et al. Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs. Royal Australasian College of Surgeons (RACS). 2014;28(5):421–37.CrossRefPubMedGoogle Scholar
  49. 49.
    Ellebaek E, Iversen TZ, Junker N, Donia M. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10:169.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mantovani G, Macciò A, Melis G, Mura L, Massa E, Mudu MC. Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha-lipoic acid and N-acetyl cysteine. Int J Cancer. 2000;86(6):842–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, et al. Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Can Res. American Association for Cancer Research. 2016;76(20):6006–16.CrossRefGoogle Scholar
  52. 52.
    Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, et al. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med. 2011;9(1):131.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ullenhag GJ, Sadeghi AM, Carlsson B. Adoptive T-cell therapy for malignant melanoma patients with TILs obtained by ultrasound-guided needle biopsy. Cancer Immunol Immunother. 2012;61(5):725–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). Unutmaz D, editor. PLoS One. 2010;5(11):e13940–12.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173(12):7125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met Z, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10(1):1.CrossRefGoogle Scholar
  57. 57.
    Andersen R, Donia M, Borch T, Steensgaard E, Iversen T, Kongsted P, et al. Adoptive cell therapy with tumor infiltrating lymphocytes and intermediate dose IL-2 for metastatic melanoma. J Immunother Cancer. 2014;2(Suppl 3):1.CrossRefGoogle Scholar
  58. 58.
    Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. American Association of Immunologists. 2005;175(10):7046–52.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, et al. Emerging targeted therapies for melanoma treatment (review). Int J Oncol. 2014;45(2):516–24.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. American Society of Hematology. 2009;114(3):535–46.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Duong CPM, Yong CSM, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Mol Immunol. Royal Australasian College of Surgeons (RACS). 2015;67(2 Pt A):46–57.CrossRefPubMedGoogle Scholar
  64. 64.
    Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol. 2010;6(5):717–32.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Trans Immunol. 2014;3(5):e16.CrossRefGoogle Scholar
  67. 67.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rooney CM, Leen AM, Vera JF, Heslop HE. T lymphocytes targeting native receptors. Immunol Rev. 2014;257(1):39–55.CrossRefPubMedGoogle Scholar
  70. 70.
    Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood. American Society of Hematology. 2007;110(8):2838–45.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010;33(9):983–90.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70. 1pfollowing570CrossRefPubMedGoogle Scholar
  73. 73.
    Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol. 2015:1–9.Google Scholar
  74. 74.
    Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. American Association for Cancer Research. 2006;12(20 Pt 1):6106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Westwood JA, Smyth MJ, Teng MWL, Moeller M, Trapani JA, Scott AM, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A. 2005;102(52):19051–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunol Cell Biol. 2017;95(4):356–63.CrossRefPubMedGoogle Scholar
  77. 77.
    Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shou D, Wen L, Song Z, Yin J, Sun Q, Gong W. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget. 2016;7(39):64505–11.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rudolph M, Hebel K, Miyamura Y, Maverakis E, Brunner-Weinzierl MC. Blockade of CTLA-4 decreases the generation of multifunctional memory CD4+ T cells in vivo. J Immunol. 2011;186(10):5580–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest. American Society for Clinical Investigation. 2017;127(3):929–41.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305–15.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Somerville RPT, Dudley ME. Bioreactors get personal. Oncoimmunology. 2012;1(8):1435–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cancer SurgeryPeter MacCallum Cancer CentreMelbourneAustralia
  2. 2.Research DivisionPeter MacCallum Cancer CentreMelbourneAustralia
  3. 3.Department of SurgeryUniversity of MelbourneParkvilleAustralia

Personalised recommendations