Abstract
The human skin is organized into three primary layers: epidermis, dermis, and the subcutaneous fat residing directly beneath them. Most germane to melanoma is the melanocyte, a specialized pigment-producing cell which transfers melanin from cellular cytoplasm to keratinocytes. This pigment is responsible for both skin color and protection from ultraviolet radiation (UVR). Exposure to particular wavelengths of UVR may result in DNA damage through a variety of mechanisms, which, in turn, predisposes to cutaneous malignancies such as melanoma. The development, invasion, and spread of melanoma are largely dependent on the interaction of melanocytes and their surrounding microenvironment. Melanocytes promote their own growth and survival by secreting growth factors. Keratinocytes are the main regulators of melanocytes, while surrounding fibroblasts become associated with melanocytes and promote their proliferation. Integrin proteins in the microenvironment mediate cytoskeleton adhesion to the extracellular matrix, which contributes to melanocyte migration and invasion. Melanoma tumors tend to invade lymphatic vessels and involve regional lymph nodes early in their course. Metastasizing through blood vessels may also be possible, but is less common and leads to an overall worse prognosis. Therefore, there is a great emphasis placed upon the early detection and removal of involved lymph nodes in melanoma management. Melanocytic nevi, nonmalignant nests of melanocytes, are classified as either dysplastic or common. Nevi that appear clinically suspicious for malignancy based on certain criteria are called atypical nevi, while those which bear histopathological resemblance to melanoma are termed dysplastic nevi. Whether dysplastic or common nevi carry greater proportionate risk for malignancy is uncertain.
Keywords
Melanoma Microenvironment Invasion Vascular Metastasis Nevus Metastasis Lymphatic Atypical DysplasticReferences
- 1.Sen GL. Remembering one’s identity: the epigenetic basis of stem cell fate decisions. FASEB J. 2011;25(7):2123–8.CrossRefPubMedGoogle Scholar
- 2.Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am. 2011;19(3):441–53.CrossRefPubMedGoogle Scholar
- 3.Brody I. The ultrastructure of the tonofibrils in the keratinization process of normal human epidermis. J Ultrastruct Res. 1960;4(3):264–97.CrossRefGoogle Scholar
- 4.Stingl G, Wolff-Schreiner EC, Pichler W, Gschnait F, Knapp W. Epidermal Langerhans cells bear Fc and C3 receptors. Nature. 1977;268:245–6.CrossRefPubMedGoogle Scholar
- 5.Elias PM. Structure and function of the stratum corneum extracellular matrix. J Investig Dermatol. 2012;132(9):2131–3.CrossRefPubMedGoogle Scholar
- 6.Arda O, Göksügür N, Tüzün Y. Basic histological structure and functions of facial skin. Clin Dermatol. 2014;32(1):3–13.CrossRefPubMedGoogle Scholar
- 7.Mescher AL. Junqueira’s basic histology: text and atlas: McGraw-Hill; 2013.Google Scholar
- 8.Hwang K, Kim H, Kim DJ. Thickness of skin and subcutaneous tissue of the free flap donor sites: a histologic study. Microsurgery. 2016;36(1):54–8.CrossRefPubMedGoogle Scholar
- 9.Menon GK, Cleary GW, Lane ME. The structure and function of the stratum corneum. Int J Pharm. 2012;435(1):3–9.CrossRefPubMedGoogle Scholar
- 10.Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2001;12(4):390–9. quiz 400-1Google Scholar
- 11.Ross M, Pawlina W. Histology a text and atlas. Baltimore: Lippincott Williams & Wilkins, a Wolters Kluwer Business; 2011.Google Scholar
- 12.Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V. Defining dermal adipose tissue. Exp Dermatol. 2014;23(9):629–31.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Schmidt B, Horsley V. Unravelling hair follicle–adipocyte communication. Exp Dermatol. 2012;21(11):827–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Mayor R, Theveneau E. The neural crest. Development. 2013;140(11):2247–51.CrossRefPubMedGoogle Scholar
- 15.Nitzan E, Pfaltzgraff ER, Labosky PA, Kalcheim C. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci. 2013;110(31):12709–14.CrossRefPubMedGoogle Scholar
- 16.White RM, Zon LI. Melanocytes in development, regeneration, and cancer. Cell Stem Cell. 2008;3(3):242–52.CrossRefPubMedGoogle Scholar
- 17.Shakhova O. Neural crest stem cells in melanoma development. Curr Opin Oncol. 2014;26(2):215–21.CrossRefPubMedGoogle Scholar
- 18.Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(4):620–32.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Fitzpatrick TB, Breathnach A. The epidermal melanin unit system. Dermatol Wochenschr. 1963;147:481–9.PubMedGoogle Scholar
- 20.Joly-Tonetti N, Wibawa JI, Bell M, Tobin DJ. Melanin fate in the human epidermis: a re-assessment of how best to detect and analyze histologically. Exp Dermatol. 2016;Google Scholar
- 21.Thody AJ, Higgins EM, Wakamatsu K, Ito S, Burchill SA, Marks JM. Pheomelanin as well as eumelanin is present in human epidermis. J Investig Dermatol. 1991;97(2):340–4.CrossRefPubMedGoogle Scholar
- 22.Pathak M, Jimbow K. Fitzpatrick T, editors. Sendai, Japan: Photobiology of pigment cell phenotypic expression in pigment cells. Proceedings of the Xth International Pigment Cell Conference; 1980.Google Scholar
- 23.Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–49.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Kushimoto T, Valencia JC, Costin GE, Toyofuku K, Watabe H, Yasumoto KI, et al. The melanosome: an ideal model to study cellular differentiation. Pigment Cell Res. 2003;16(3):237–44.CrossRefPubMedGoogle Scholar
- 25.Dell’Angelica EC. Melanosome biogenesis: shedding light on the origin of an obscure organelle. Trends Cell Biol. 2003;13(10):503–6.CrossRefPubMedGoogle Scholar
- 26.Wu X, Hammer JA. Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol. 2014;29:1–7.CrossRefPubMedGoogle Scholar
- 27.Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340(17):1341–8.CrossRefPubMedGoogle Scholar
- 28.Young AR, Chadwick CA, Harrison GI, Nikaido O, Ramsden J, Potten CS. The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. J Investig Dermatol. 1998;111(6):982–8.CrossRefPubMedGoogle Scholar
- 29.Hölzle E, Hönigsmann H. [UV-radiation--sources, wavelength, environment]. Journal der Deutschen Dermatologischen Gesellschaft= Journal of the German Society of Dermatology: JDDG. 2005;3:S3-10.Google Scholar
- 30.De Fabo EC. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health. International journal of circumpolar health. 2005;64(5).Google Scholar
- 31.Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.CrossRefPubMedGoogle Scholar
- 32.Vink AA, Roza L. Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B Biol. 2001;65(2):101–4.CrossRefGoogle Scholar
- 33.Kvam E, Tyrrell RM. Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis. 1997;18(12):2379–84.CrossRefPubMedGoogle Scholar
- 34.Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin—a comparison of black and Caucasian skin. J Am Acad Dermatol. 1979;1(3):249–60.CrossRefPubMedGoogle Scholar
- 35.Mervic L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One. 2012;7(3):e32955.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Streit M, Detmar M. Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene. 2003;22(20):3172–9.CrossRefPubMedGoogle Scholar
- 37.León P, Daly JM, Synnestvedt M, Schultz DJ, Elder DE, Clark WH. The prognostic implications of microscopic satellites in patients with clinical stage I melanoma. Arch Surg. 1991;126(12):1461–8.CrossRefPubMedGoogle Scholar
- 38.Leiter U, Meier F, Schittek B, Garbe C. The natural course of cutaneous melanoma. J Surg Oncol. 2004;86(4):172–8.CrossRefPubMedGoogle Scholar
- 39.Meier F, Will S, Ellwanger U, Schlagenhauff B, Schittek B, Rassner G, et al. Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. Br J Dermatol. 2002;147(1):62–70.CrossRefPubMedGoogle Scholar
- 40.Cascinelli N, Morabito A, Santinami M, MacKie R, Belli F. Immediate or delayed dissection of regional nodes in patients with melanoma of the trunk: a randomised trial. Lancet. 1998;351(9105):793–6.CrossRefPubMedGoogle Scholar
- 41.Kretschmer L, Hilgers R, Möhrle M, Balda B, Breuninger H, Konz B, et al. Patients with lymphatic metastasis of cutaneous malignant melanoma benefit from sentinel lymphonodectomy and early excision of their nodal disease. Eur J Cancer. 2004;40(2):212–8.CrossRefPubMedGoogle Scholar
- 42.Sappey M. Anatomy, physiology and pathology of the lymphatic vessels in man and vertebrates. DeLahaye A, Lecrosnier E (trans-eds) Paris, France. 1874.Google Scholar
- 43.Sugarbaker E, McBride C. Melanoma of the trunk: the results of surgical excision and anatomic guidelines for predicting nodal metastasis. Surgery. 1976;80(1):22–30.PubMedGoogle Scholar
- 44.Norman J, Cruse CW, Espinosa C, Cox C, Berman C, Clark R, et al. Redefinition of cutaneous lymphatic drainage with the use of lymphoscintigraphy for malignant melanoma. Am J Surg. 1991;162(5):432–7.CrossRefPubMedGoogle Scholar
- 45.Reynolds HM, Walker CG, Dunbar P, O’Sullivan MJ, Uren RF, Thompson JF, et al. Functional anatomy of the lymphatics draining the skin: a detailed statistical analysis. J Anat. 2010;216(3):344–55.CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Damsky W, Theodosakis N, Bosenberg M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene. 2014;33(19):2413–22.CrossRefPubMedGoogle Scholar
- 47.Salmon M. Arteres de la peau: Etude anatomique et chirurgicale; Travail du Laboratoire d’anatomie de la Fac. de Marseille: Masson; 1936.Google Scholar
- 48.Taylor GI, Palmer J. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987;40(2):113–41.CrossRefPubMedGoogle Scholar
- 49.Taylor IG, Pan WR. Angiosomes of the leg: anatomic study and clinical implications. Plast Reconstr Surg. 1998;102(3):599–616.CrossRefPubMedGoogle Scholar
- 50.Ryan T. Cutaneous circulation. Biochemistry and physiology of the skin. 1983;2:817–77.Google Scholar
- 51.Braverman IM, editor The cutaneous microcirculation. Journal of Investigative Dermatology Symposium Proceedings; 2000: Elsevier.Google Scholar
- 52.Braverman IM, Keh-Yen A. Ultrastructure of the human dermal microcirculation. IV. Valve-containing collecting veins at the dermal–subcutaneous junction. J Investig Dermatol. 1983;81(5):438–42.CrossRefPubMedGoogle Scholar
- 53.Fernandez-Flores A. Prognostic factors for melanoma progression and metastasis: from hematoxylin-eosin to genetics. Romanian J Morphol Embryol. 2012;53(3):449–59.Google Scholar
- 54.Lugassy C, Barnhill RL. Angiotropic melanoma and extravascular migratory metastasis: a review. Adv Anat Pathol. 2007;14(3):195–201.CrossRefPubMedGoogle Scholar
- 55.Zbytek B, Carlson JA, Granese J, Ross J, Mihm M, Slominski A. Current concepts of metastasis in melanoma. Expert Rev Dermatol. 2008;3(5):569–85.CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Bayer-Garner IB, Hough AJ Jr, Smoller BR. Vascular endothelial growth factor expression in malignant melanoma: prognostic versus diagnostic usefulness. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 1999;12(8):770–4.Google Scholar
- 57.Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Current oncology reports. 2008;10(5):439-46.CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Brandner JM, Haass NK. Melanoma’s connections to the tumour microenvironment. Pathology-Journal of the RCPA. 2013;45(5):443–52.Google Scholar
- 59.Tannous ZS, Mihm MC, Sober AJ, Duncan LM. Congenital melanocytic nevi: clinical and histopathologic features, risk of melanoma, and clinical management. J Am Acad Dermatol. 2005;52(2):197–203.CrossRefPubMedGoogle Scholar
- 60.Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene. 2001;20(56):8125–35.CrossRefPubMedGoogle Scholar
- 61.Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci. 1994;107(4):983–92.PubMedGoogle Scholar
- 62.Van Marck V, Stove C, Van Den Bossche K, Stove V, Paredes J, Vander Haeghen Y, et al. P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res. 2005;65(19):8774–83.CrossRefPubMedGoogle Scholar
- 63.Labrousse AL, Ntayi C, Hornebeck W, Bernard P. Stromal reaction in cutaneous melanoma. Crit Rev Oncol Hematol. 2004;49(3):269–75.CrossRefPubMedGoogle Scholar
- 64.Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M. Function and regulation of melanoma–stromal fibroblast interactions: when seeds meet soil. Oncogene. 2003;22(20):3162–71.CrossRefPubMedGoogle Scholar
- 65.Clark WH, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15(12):1147–65.CrossRefPubMedGoogle Scholar
- 66.Ackerman AB, Mihara I. Dysplasia, dysplastic melanocytes, dysplastic nevi, the dysplastic nevus syndrome, and the relation between dysplastic nevi and malignant melanomas. Hum Pathol. 1985;16(1):87–91.CrossRefPubMedGoogle Scholar
- 67.Duffy K, Grossman D. The dysplastic nevus: from historical perspective to management in the modern era: part I. Historical, histologic, and clinical aspects. Journal of the American Academy of Dermatology. 2012;67(1):1. e-. e16.CrossRefGoogle Scholar
- 68.Bergman W, van Voorst VP, Ruiter D. Dysplastic nevi and the risk of melanoma: a guideline for patient care. Nederlandse Melanoom Werkgroep van de Vereniging voor Integrale Kankercentra. Ned Tijdschr Geneeskd. 1997;141(42):2010–4.PubMedGoogle Scholar
- 69.Clemente C, Cochran AJ, Elder DE, Levene A, Mackie RM, Mihm MC, et al. Histopathologic diagnosis of dysplastic nevi: concordance among pathologists convened by the World Health Organization melanoma Programme. Hum Pathol. 1991;22(4):313–9.CrossRefPubMedGoogle Scholar
- 70.Lynch HT, Frichot BC, Lynch JF. Familial atypical multiple mole-melanoma syndrome. J Med Genet. 1978;15(5):352–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Elder DE, Goldman LI, Goldman SC, Greene MH, Clark WH. Dysplastic nevus syndrome: a phenotypic association of sporadic cutaneous melanoma. Cancer. 1980;46(8):1787–94.CrossRefPubMedGoogle Scholar
- 72.Clark WH, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ. Origin of familial malignant melanomas from heritable melanocytic lesions: the BK mole syndrome. Arch Dermatol. 1978;114(5):732–8.CrossRefPubMedGoogle Scholar
- 73.Tucker MA, Fraser MC, Goldstein AM, Struewing JP, King MA, Crawford JT, et al. A natural history of melanomas and dysplastic nevi. Cancer. 2002;94(12):3192–209.CrossRefPubMedGoogle Scholar
- 74.Kelly JW, Yeatman JM, Regalia C, Mason G, Henham AP. A high incidence of melanoma found in patients with multiple dysplastic naevi by photographic surveillance. Med J Aust. 1997;167(4):191–4.PubMedGoogle Scholar
- 75.Greene MH, Clark WH Jr, Tucker MA, Elder DE, Kraemer KH, Guerry D IV, et al. Acquired precursors of cutaneous malignant melanoma: the familial dysplastic nevus syndrome. N Engl J Med. 1985;312(2):91–7.CrossRefPubMedGoogle Scholar
- 76.Meyer LJ, Piepkorn M, Goldgar DE, Lewis CM, Cannon-Albright LA, Zone JJ, et al. Interobserver concordance in discriminating clinical atypia of melanocytic nevi, and correlations with histologic atypia. J Am Acad Dermatol. 1996;34(4):618–25.CrossRefPubMedGoogle Scholar
- 77.Annessi G, Cattaruzza MS, Abeni D, Baliva G, Laurenza M, Macchini V, et al. Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. J Am Acad Dermatol. 2001;45(1):77–85.CrossRefPubMedGoogle Scholar
- 78.Crucioli V, Stilwell J. The Histogenesis of malignant melanoma in relation to pre-existing pigmented lesions. J Cutan Pathol. 1982;9(6):396–404.CrossRefPubMedGoogle Scholar
- 79.Sagebiel RW. Melanocytic nevi in histologic association with primary cutaneous melanoma of superficial spreading and nodular types: effect of tumor thickness. J Investig Dermatol. 1993;100(3):322–5.CrossRefGoogle Scholar
- 80.Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H. Cutaneous melanomas associated with nevi. Arch Dermatol. 2003;139(12):1620–4.CrossRefPubMedGoogle Scholar
- 81.Barnhill RL, Fleischli M. Histologic features of congenital melanocytic nevi in infants 1 year of age or younger. J Am Acad Dermatol. 1995;33(5):780–5.CrossRefPubMedGoogle Scholar