Advertisement

In Vitro-Assisted Compression of Breeding Cycles

  • Janine Croser
  • Federico Ribalta
  • Maria Pazos Navarro
  • Christine Munday
  • Richard Bennett
  • Parwinder Kaur
  • Sergio Ochatt
Chapter

Abstract

The compression of breeding cycles to quickly progress segregating material to homozygosity has attracted substantial international research interest for some decades. Modified pedigree breeding methods such as single seed descent (SSD) have enabled faster generation turnover and commercialization of new crop cultivars. Since the latter part of the last century, doubled haploid technology has revolutionized the progression to genome fixation in responsive species. In unresponsive but economically important families, biotechnological tools are being developed to accelerate traditional SSD – either by completing the full plant life cycle in vitro or by coupling controlled environmental conditions in the soil to elicit rapid floral onset with germination of immature seed in vitro to truncate seed filling. Both techniques have resulted in step-change efficiencies in generation turnover with up to fourfold improvements in species such as grain legumes. Such enhanced SSD systems are also valuable for breeding complex traits across a range of species. In this chapter, we explore the recent advances in in vitro-assisted breeding cycle compression in crops, opportunities to combine rapid phenotyping for key traits and the benefits of in vitro life cycle completion when researching under restrictive regulatory frameworks and working with enfeebled or rare material.

Keywords

In vitro flowering In vitro seed set Single seed descent Embryo culture Phenotyping Multiparental populations Precocious germination 

References

  1. Adamski T, Krystkowiak K, Kuczynska A, Mikolajczak K, Ogrodowicz P, Ponitka A, Surma M, Slusarkiewicz-Jarzina A (2014) Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.) Electron J Biotechnol 17:6–13CrossRefGoogle Scholar
  2. Al-Wareh H, Trolinder NL, Goodin JR (1989) In vitro flowering of potato. Hortscience 24:827–829Google Scholar
  3. Ameha M, Skirvin RM, Mitiku G, Dullock D, Hofman P (1998) In vitro tendril and flower development in cucumber (Cucumis sativus) may be regulated by gibberellins. J Hortic Sci Biotechnol 73:159–163CrossRefGoogle Scholar
  4. Asawaphan P, Mangkita W, Kachonpadungkitti Y, Matsuyama S, Satake T, Hisajima S (2005) Efficient flower induction from peanut (Arachis hypogaea L.) seedling in vitro. SABRAO J Breed Genet 37:131–140Google Scholar
  5. Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Jacas L, Griga M, Ochatt SJ (2013a) Gene transfer in legumes. In: Lüttge U, Beyschlag W, Francis D, Cushman J (eds) Progress in botany 74:37–100CrossRefGoogle Scholar
  6. Atif RM, Boulisset F, Conreux C, Thompson R, Ochatt SJ (2013b) In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of the model legume species Medicago truncatula. Physiol Plant 148:549–559PubMedCrossRefGoogle Scholar
  7. Baghel S, Bansal YK (2014) Synergistic effect of BAP and GA3 on in vitro flowering of Guizotia abyssinica Cass.-a multipurpose oil crop. Physiol Mol Biol Plants 20:241–247PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bais HP, Sudha GS, Ravishankar GA (2000) Putrescine and AgNO3 influences shoot multiplication, in vitro flowering and endogenous titers of polyamines in Cichorium intybus L. cv. Lucknow local. J Plant Growth Regul 19:238–248PubMedPubMedCentralGoogle Scholar
  9. Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519CrossRefGoogle Scholar
  10. Bermejo C, Gatti I, Cointry E (2016) In vitro embryo culture to shorten the breeding cycle in lentil (Lens culinaris Medik). Plant Cell Tissue Org 127:585–590CrossRefGoogle Scholar
  11. Bhattarai SP, Robert C, Midmore DJ, Palchamy K (2009) In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica 167(1):23–30CrossRefGoogle Scholar
  12. Bodhipadma K, Leung DWM (2003) In vitro fruiting and seed set of Capsicum annuum l. cv. Sweet Banana. Vitro Cell Dev-Pl 39:536–539CrossRefGoogle Scholar
  13. Burton AL, Pennisi SV, van Iersel MW (2007) Morphology and postharvest performance of Geogenanthus undatus C. Koch & Linden ‘Inca’after application of ancymidol or flurprimidol. Hortscience 42:544–549Google Scholar
  14. Caligari PDS, Powell W, Jinks JL (1987) A comparison of inbred lines derived by doubled haploidy and single seed descent in spring barley (Hordeum vulgare). Ann Appl Biol 111:667–675CrossRefGoogle Scholar
  15. Cao Z, Zhu X, Chen H, Zhang Z (2015) Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line. Mol Breed 35:215–228CrossRefGoogle Scholar
  16. Castello M, Croser J, Lülsdorf M, Ramankutty P, Pradhan A, Nelson M, Real D (2015) Breaking primary dormancy in seeds of the perennial pasture legume tedera (Bituminaria bituminosa C.H. Stirt. vars albomarginata and crassiuscula). Grass Forage Sci 70:365–373CrossRefGoogle Scholar
  17. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221PubMedCrossRefGoogle Scholar
  18. Cope KR, Bugbee B (2013) Spectral effects of three types of whitelight-emitting diodes on plant growth and development: absoluteversus relative amounts of blue light. Hortscience 48:504–509Google Scholar
  19. Cregan PB, Hartwig EE (1984) Characterization of flowering response to photoperiod in diverse soybean genotypes. Crop Sci 24:659–662CrossRefGoogle Scholar
  20. Croser J, Pazos-Navarro M, Bennett RG, Tschirren S, Edwards K, Erskine W, Creasy R, Ribalta F (2016) Time to flower of temperate pulses in vivo and generation turnover in vivoin vitro of narrow-leaf lupin accelerated by low red 448 to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Org 127:591–599CrossRefGoogle Scholar
  21. Cummings IG, Reid JB, Koutoulis A (2007) Red to far-red ratio correctionin plant growth chambers—growth responses and influenceof thermal load on garden pea. Physiol Plant 131:171–179PubMedPubMedCentralGoogle Scholar
  22. Davison J, Ammann K (2017) New GMO regulations for old: determining a new future for EU crop biotechnology. GM Crops Food 8(1):13–34PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dickens CWS, van Staden J (1988) The in vitro flowering of Kalanchöe blossfeldiana Poellniz.: 1. Role of culture conditions and nutrients. J Exp Bot 39:461–471CrossRefGoogle Scholar
  24. Dutta Mudoi K, Borthakur M (2012) Factors affecting the frequency of in vitro flowering of Bambusa balcooa Roxb. Indian J Plant Physiol 17:37–43Google Scholar
  25. Ellis RH, Hong TD, Roberts EH (1987) The development of desiccation-tolerance and maximum seed quality during seed maturationin six grain legumes. Ann Bot 59:23–29CrossRefGoogle Scholar
  26. Franklin G, Pius PK, Ignacimuthu S (2000) Factors affecting in vitro flowering and fruiting of green pea (Pisum sativum L.) Euphytica 115:65–74CrossRefGoogle Scholar
  27. Friend DJC, Fisher JE, Helson VA (1963) The effect of light intensity and temperature on floral initiation and inflorescence development of Marquis wheat. Can J Bot 41:1663–1674CrossRefGoogle Scholar
  28. Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gallardo K, Kurt C, Thompson R, Ochatt S (2006) In vitro culture of immature M. truncatula grains under conditions permitting embryo development comparable to that observed in vivo. Plant Sci 170:1052–1058CrossRefGoogle Scholar
  30. Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. C R Biol 331:755–762PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gatti I, Guindón F, Bermejo C, Espósito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tissue Org 127:543–559CrossRefGoogle Scholar
  32. Germanà MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Org 104:283–300CrossRefGoogle Scholar
  33. Gielis J, Peeters H, Gillis J, Debergh PC (2002) Tissue culture strategies for genetic improvement of bamboo. In: Van Huylebroeck J, Van Bockstaele E, Debergh P (eds) Proceedings of the XX international eucarpia symposium, Acta Hort 552:195–203Google Scholar
  34. Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceedings of the seventh genetic congress. Cambridge UniversityPress, England, pp 132–133Google Scholar
  35. Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220CrossRefGoogle Scholar
  36. Hamid MM, Williams RR (1997) Effect of different types and concentrations of plant growth retardants on Sturt's desert pea (Swainsona formosa). Sci Hortic 71:79–85CrossRefGoogle Scholar
  37. Haque SKM, Ghosh B (2013a) Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides an ethno-medicinal plant. Environ Exp Biol 11:59–68Google Scholar
  38. Haque SM, Ghosh B (2013b) In vitro completion of sexual life cycle: production of R1 plant of Ipomoea quamoclit L. Propag Ornam Plants 13:19–24Google Scholar
  39. Haque SM, Paul S, Ghosh B (2016) High-frequency in vitro flowering, hand-pollination and fruit setting in ten different cultivars of Capsicum spp. (C. annuum, C. chinense, and C. frutescens): an initial step towards in vitro hybrid production. Plant Cell Tissue Org 127:161–173CrossRefGoogle Scholar
  40. Iannucci A, Terribile MR, Martiniello P (2008) Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterraneanenvironment. Field Crop Res 1006:156–162CrossRefGoogle Scholar
  41. Islam MS, Zeng L, Delhom CD, Song X, Kim HJ, Li P, Fang DD (2014) Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength. Mol Breed 34:373–384CrossRefGoogle Scholar
  42. Islam MS, Thyssen GN, Jenkins JN, Zeng L, Delhom CD, McCarty JC, Deng DD, Hinchliffe DJ, Jones DC, Fang DD (2016) A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics 17:903.  https://doi.org/10.1186/s12864-016-3249-2 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jain SM, Sopory SK, Veilleux RE (1996/1997) In vitro haploid production in higher plants. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Joshi MS, Nadgauda RS (1997) Cytokinin and in vitro induction of flowering in bamboo: Bambusa arundinacea (Retz.) wild. Curr Sci 73:523–526Google Scholar
  45. Kasha KJ, Maluszynski M (2003) Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 1–4Google Scholar
  46. Kasten W, Paradise T, Kunert R, Straka P (1991) Progress in realization of interspecific hybrids in the genus Lupinus by means of an embryo rescue technique. Biol Zbl 110:301–309Google Scholar
  47. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307CrossRefGoogle Scholar
  48. Le Deunff Y, Rachidian Z (1988) Interruption of water delivery atphysiological maturity is essential for seed development, germinationand seedling growth in pea (Pisum sativum L.) J Exp Bot 39:1221–1230CrossRefGoogle Scholar
  49. Lentini Z, Mussell H, Mutschler MA, Earle ED (1988) Ethylene generation and reversal of ethylene effects during development in vitro of rapid-cycling Brassica campestris. L. Plant Sci 54:75–81CrossRefGoogle Scholar
  50. Liu H, Zwer P, Wang H, Liu C, Lu Z, Wang Y, Yan G (2016) A fast generation cycling system for oat and triticale breeding. Plant Breed 135:574–579CrossRefGoogle Scholar
  51. Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 336–347Google Scholar
  52. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic Publishers, Dordrecht, pp 309–335CrossRefGoogle Scholar
  53. Metwally EI, El-Denary ME, Omar AM, Naidoo Y, Dewir YH (2012) Bulb and vegetative characteristics of garlic (Allium sativum L.) from in vitro culture through acclimatization and field production. Af J Ag Res 7:5792–5795CrossRefGoogle Scholar
  54. Mobini SH, Lülsdorf M, Warkentin TD, Vandenberg A (2015) Plantgrowth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev-Pl 51:71–79CrossRefGoogle Scholar
  55. Mobini SH, Warkentin TD (2016) A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.) In Vitro Cell Dev-Pl 52:530–536CrossRefGoogle Scholar
  56. Moe R, Heins R (1990) Control of plant morphogenesis and flowering by light quality and temperature. Acta Hortic 272:81–89CrossRefGoogle Scholar
  57. Murfet IC, Reid JB (1974) Flowering in Pisum: the influence of photoperiodand vernalising temperatures on the expression of genesLf and Sn. Z Pflanzenphysiol 71:323–331CrossRefGoogle Scholar
  58. Murthy KSR, Kondamudi R, Chalapathi Rao PV, Pullaiah T (2012) In vitro flowering - a review. Int J Agr Tech 8:1517–1536Google Scholar
  59. Narasimhulu SB, Reddy GM (1984) In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaea L.) Theor Appl Genet 69:87–89PubMedCrossRefGoogle Scholar
  60. Naznin MT, Lefsrud MG (2014) Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet. Proceedings SPIE 9216, optics and photonics for information processing VIII 19 Sept 2014.  https://doi.org/10.1117/12.2061236
  61. Nelson MN, Berger JD, Erskine W (2010) Flowering time control in annual legumes: prospects in a changing global climate. CABRev Pers Agr Vet Sci Nutr Nat Res 5:49–62Google Scholar
  62. Nichols P, Foster K, Piano E, Pecetti L, Kaur P, Ghamkhar K, Collins W (2013) Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospects. Crop Pasture Sci 64:312–346CrossRefGoogle Scholar
  63. Obendorf RL, Wettlaufer SH (1984) Precocious germination during in vitro growth of soybean seeds. Plant Physiol 76(4):1024–1028PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ochatt SJ (2011) Immature seeds and embryos of Medicago truncatula cultured in vitro. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols; methods in molecular biology. Springer Protocols/Humana Press, New York, pp 39–52CrossRefGoogle Scholar
  65. Ochatt SJ (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552CrossRefGoogle Scholar
  66. Ochatt SJ (2017) Embryo and seed tissue culture help unravelling seed development and cell totipotence. In: Thomas B, Murray B, Murphy D (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic Press, Oxford. In pressGoogle Scholar
  67. Ochatt SJ, Sangwan RS (2008) In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell Tissue Org 93:133–137CrossRefGoogle Scholar
  68. Ochatt SJ, Sangwan RS (2010) In vitro flowering and seed set: acceleration of generation cycles. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 97–110CrossRefGoogle Scholar
  69. Ochatt SJ, Revilla MA (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In: Germanà MA, Lambardi M (eds) In vitro plant embryogenesis. Springer, New York, pp 523–536CrossRefGoogle Scholar
  70. Ochatt SJ, Sangwan RS, Marget P, Assoumou Ndong Y, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440CrossRefGoogle Scholar
  71. Ochatt S, Marget P, Benabdelmouna A, Aubert G, Moussy F, Pontécaille C, Jacas L (2004) Overcoming hybridisation barriers between pea and some of its wild relatives. Euphytica 137:353–359CrossRefGoogle Scholar
  72. Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328PubMedCrossRefGoogle Scholar
  73. Ochatt SJ, Conreux C, Jacas L (2010) In vitroproduction of sweet peas (Lathyrus odoratus L.) via axillary shoots. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants, methods in molecular biology, vol 589. Springer, New York, pp 293–230CrossRefGoogle Scholar
  74. PazosNavarro M, Castello M, Bennett RG, Nichols P, Croser J (2017) In vitro-assisted single seed descent for breeding cycle compression in subterranean clover (Trifolium subterraneum L.) Crop Pasture Sci.  https://doi.org/10.1071/CP17067
  75. Pobudkiewicz A, Treder J (2006) Effects of flurprimidol and daminozide on growth and flowering of oriental lily ‘Mona Lisa. Sci Hortic 110:328–333CrossRefGoogle Scholar
  76. Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531CrossRefGoogle Scholar
  77. Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ribalta FM, Croser JS, Erskine W, Finnegan PM, Lülsdorf MM, Ochatt SJ (2014) The antigibberellin Flurprimidol permits in vitro flowering and seed-set across a range of pea (Pisum sativum L.) genotypes by reducing internode length. Biol Plant 58:39–46CrossRefGoogle Scholar
  79. Ribalta FM, Pazos Navarro M, Nelson K, Edwards K, Ross JJ, Bennett RG, Munday C, Erskine W, Ochatt SJ, Croser JS (2017) Precocious floral initiation and identification of exact timing of embryo physiological maturity facilitiate germination of immature seeds to truncate the lifecycle of pea. Plant Growth Regul 81(2):345–353CrossRefGoogle Scholar
  80. Rizal G, Karki S, Alcasid M, Montecillo F, Acebron K, Larazo N, Garcia R, Slamet-Loedin IH, Quick WP (2014) Shortening the breeding cycle of sorghum, a model crop for research. Crop Sci 54(2):520–529CrossRefGoogle Scholar
  81. Roberts EH, Hadley P, Summerfield RJ (1985) Effects of temperature and photoperiod on flowering in chickpeas (Cicer arietinum L.) Ann Bot 55:881–892CrossRefGoogle Scholar
  82. Roumet P, Morin F (1997) Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Sci 37:521–525CrossRefGoogle Scholar
  83. Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275–282Google Scholar
  84. Sarker RH, Das SK, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.) In Vitro Cell Dev-Pl 48:446–452CrossRefGoogle Scholar
  85. Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sharma A, Kumar V, Giridhar P, Ravishankar GA (2008) Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Electron J Biotechnol 11:2.  https://doi.org/10.4067/S0717-34582008000200011 CrossRefGoogle Scholar
  87. Sheeja TE, Mandal AB (2003) In vitro flowering and fruiting in tomato (Lycopersicon esculentum Mill.) Asia Pac J Mol Biol Biotechnol 11(1):37–42Google Scholar
  88. Sivanesan I, Park SW (2015) Optimizing factors affecting adventitious shoot regeneration, in vitro flowering and fruiting of Withania somnifera (L.) Dunal. Ind Crop Prod 76:223–328CrossRefGoogle Scholar
  89. Slater S, Yuan HY, Lulsdorf MM, Vandenberg A, Zaharia L, Han X, Abrams S (2013) Comprehensive hormone profiling of the developing seeds of four grain legumes. Plant Cell Rep 3:1939–1952CrossRefGoogle Scholar
  90. Spalding EP, Folta KM (2005) Illuminating topics in photobiology. Plant Cell Environ 28:39–53CrossRefGoogle Scholar
  91. Stutte GW (2009) Light-emitting diodes for manipulating the phytochrome apparatus. Hortscience 44:231–234Google Scholar
  92. Surma M, Adamski T, Swiecicki W, Barzyk P, Kaczmarek Z, Kuczynska A, Krystkowiak K, Mikolajczak K, Ogrodowicz P (2013) Preliminary results of in vitro culture of pea and lupin embryosfor the reduction of generation cycles in single seed descent technique. Acta Soc Bot Pol 82:231–236CrossRefGoogle Scholar
  93. Summerfield RJ, Roberts EH, Erskine W, Ellis RH (1983) Effects of temperature and photoperiod on flowering time in lentils (Lens culinaris Medic). Ann Bot 56:659–671CrossRefGoogle Scholar
  94. Summerfield RJ, Lawn RJ (1987) Environmental modulation of flowering in mungbean (Vigna radiata): a reappraisal. Exp Agric 23:461–470CrossRefGoogle Scholar
  95. Taylor NJ, Light ME, Staden JV (2005) In vitro flowering of Kniphofia leucocephala: influence of cytokinins. Plant Cell Tissue Org 83:327–333CrossRefGoogle Scholar
  96. Teixeira da Silva JA, Kerbauy GB, Zeng S, Chen Z, Duan J (2014a) In vitro flowering of orchids. Crit Rev Biotechnol 34:56–76PubMedCrossRefGoogle Scholar
  97. Teixeira da Silva JA, Zeng S, Cardoso JC, Dobránszki J, Kerbauy GB (2014b) In vitro flowering of Dendrobium. Plant Cell Tissue Org 119:447–456CrossRefGoogle Scholar
  98. Tisserat B, De Mason DA (1985) Occurrence and histological structure of shoots and inflorescence produced from Phoenix dactylifera L. plantlets in vitro. Bull Torrey Bot Club 112:35–42CrossRefGoogle Scholar
  99. Tisserat B, Galletta PD (1995) In vitro flowering and fruiting of Capsicum frutescens L. Hortscience 30:130–132Google Scholar
  100. Tisserat B, Galletta PD (1988) In vitro flowering in Amaranthus. Hortscience 23:210–212Google Scholar
  101. Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KP, Gaur P, Munier-Jolain N, Larmure A, Voisin A-S, Sharma H, Pande S, Sharma M, Krishnamurthy L, Zaman M (2012) Adaptationof grain legumes to climate change: a review. Agron Sustain Dev 32:31–44CrossRefGoogle Scholar
  102. Vince-Prue D (1981) Daylight and photoperiodism. In: Smith H (ed) Plants and the daylight spectrum. Academic Press Inc, London, pp 223–242Google Scholar
  103. Wang S, Tang L, Chen F (2001) In vitro flowering of bitter melon. Plant Cell Rep 20:393–397CrossRefGoogle Scholar
  104. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279PubMedCrossRefPubMedCentralGoogle Scholar
  105. Weller JL, Beauchamp N, Kerckhoffs LHJ, Platten JD, Reid JB (2001) Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J 26:283–294PubMedCrossRefPubMedCentralGoogle Scholar
  106. Yao Y, Zhang P, Wang H, Lu Z, Liu C, Liu H, Yan G (2016) How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? Euphytica 209:113–119CrossRefGoogle Scholar
  107. Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287PubMedCrossRefPubMedCentralGoogle Scholar
  108. Zhang T (2007) Studies on in vitro flowering and fruiting of Perilla frutescens. Agri Sci China 6:33–37CrossRefGoogle Scholar
  109. Zheng Z, Wang HB, Chen GD, Yan G, Liu CJ (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 91:311–316CrossRefGoogle Scholar
  110. Zhou Y, Singh BR (2002) Red light stimulates flowering and anthocyaninbiosynthesis in American cranberry. Plant Growth Regul 38:165–171CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Janine Croser
    • 1
  • Federico Ribalta
    • 1
  • Maria Pazos Navarro
    • 1
  • Christine Munday
    • 1
  • Richard Bennett
    • 1
  • Parwinder Kaur
    • 1
  • Sergio Ochatt
    • 2
  1. 1.The University of Western AustraliaCrawleyAustralia
  2. 2.Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-ComtéDijonFrance

Personalised recommendations