Developing Stress-Tolerant Plants Through In Vitro Tissue Culture: Family Brassicaceae

  • Nelofer Jan
  • Hilal Ahmad Qazi
  • Salika Ramzan
  • Riffat JohnEmail author


Plant stress is an unfavourable environmental constraint affecting the plant growth and development leading to a worldwide loss in agricultural productivity. The environmental stress on plants can be biotic or abiotic. Biotic stress involves the damage caused by various living organisms including bacteria, viruses, fungi, parasites and insects affecting the crop yield. Abiotic stress involves various environment factors including drought, salinity, heavy metal, high temperature and low temperature stress that affect the plant growth and development, leading to reduced crop yield. Brassicaceae being grown in arid and semiarid regions is severely affected by both biotic stresses and abiotic stresses. Various agronomic practices, conventional breeding methods and biotechnological approaches were used for the management of various stresses and development of stress tolerance in Brassicaceae. However, all these methods were found to be undesirable and less successful. Recently, tissue culture approach has proved to be more convenient and cost-effective technique for the development of stress tolerance in plants. The technique operating under controlled environmental conditions with less time and space has very high potential for the development of various stress-tolerant crop plants and is used for the understanding of physiology and biochemistry of plants cultured under various environmental stress conditions. Using tissue culture technique, various stress-tolerant Brassica crops are developed. Various stress-tolerant lines of Brassica were obtained by in vitro selection. These stress-tolerant lines of Brassicaceae showed improved tolerance to both biotic and stresses along with better yield. Therefore, in vitro selection technique provides new opportunities for improving stress tolerance in Brassicaceae for environmental sustainability.


Tissue culture Abiotic stress Somatic hybridization Brassicaceae In vitro 


  1. Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R (2007) Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. J Agric Food Chem 55:7936–7943PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abood JK, Lösel DM (2003) Changes in carbohydrate composition of cucumber leaves during the development of powdery mildew infection. Plant Pathol 52(2):256–265CrossRefGoogle Scholar
  3. Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford, p 385Google Scholar
  4. Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Somaclonal variation in rice-drought tolerance and other agronomic characters. Aust J Bot 43:201–209CrossRefGoogle Scholar
  5. Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alameda D, Anten NPR, Villar R (2012) Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress. Soil Tillage Res 120:121–129CrossRefGoogle Scholar
  7. Alikaridis F, Papadakis D, Pantelia K, Kephalas T (2000) Flavonolignan production from Silybum marianum transformed and untransformed root cultures. Fitoterapia 71:379–384PubMedCrossRefPubMedCentralGoogle Scholar
  8. Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contribution from the Gray Herbarium of Harvard University 204:3–148Google Scholar
  9. Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arboretum 65(3):343–373Google Scholar
  10. Al-Shehbaz IA (1985) The genera of Brassiceae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arboretum. 66(3):279–351CrossRefGoogle Scholar
  11. Al-Shehbaz IA, O’Kane SL Jr, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 1:296–307CrossRefGoogle Scholar
  12. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  13. Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691PubMedCrossRefPubMedCentralGoogle Scholar
  14. Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472CrossRefGoogle Scholar
  15. Appel O, Al-Shehbaz I (2003) Cruciferae flowering plants Dicotyledons. Springer, Berlin, pp 75–174CrossRefGoogle Scholar
  16. Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci 93(23):13404–13409CrossRefGoogle Scholar
  17. Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174CrossRefGoogle Scholar
  18. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O'kane SL, Warwick SI, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23(11):2142–2160PubMedCrossRefPubMedCentralGoogle Scholar
  20. Baldi A, Dixit VK (2008) Enhanced artemisinin production by cell cultures of Artemisia annua. Curr Trends Biotechnol Pharmacol 2:341–348Google Scholar
  21. Barakat MN, Abdel-Latif TH (1995) In vitro selection for drought tolerant lines in wheat. I. Effect of PEG on the embryonic cultures. Alex J Agric Res 40:97–112Google Scholar
  22. Barakat MN, Abdel-Latif TH (1996) In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91:127–140Google Scholar
  23. Basavaraju R (2005) Plant tissue culture in plant biotechnology. Proc AP Akademi Sci 9:193–200Google Scholar
  24. Basavaraju R (2011) Plant tissue culture-agriculture and health of man. Indian J Sci Technol 4(3):333–335Google Scholar
  25. Basu S, Gangopadhyay G, Mukherjee BB, Gupta S (1997) Plant regeneration of salt adapted callus of indica rice (var. Basmati 370) in saline conditions. Plant Cell Tissue Organ Cult 50:153–159CrossRefGoogle Scholar
  26. Basu SK, Datta M, Sharma M, Kumar A (2011) Haploid plant production technology in wheat and some selected higher plants. Aust J Crop Sci 5(9):1087–1093Google Scholar
  27. Bawa BS, Torrey JG (1971) Budding and nuclear division in cultured protoplasts of corn, convolvulus, and onion. Bot Gaz 132(3):240–245CrossRefGoogle Scholar
  28. Behnke M (1979) Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants. Theor Appl Genet 55:69–71PubMedCrossRefPubMedCentralGoogle Scholar
  29. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93(4):607–619PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bellostas N, Sorensen AD, Sorensen JC, Sorensen H (2007) Genetic variation and metabolism of glucosinolates. Adv Bot Res 45:369–415CrossRefGoogle Scholar
  31. Ben-Hayyim G, Goffer Y (1989) Plantlet regeneration from a NaCl-selected salt tolerant callus culture of Shamouti orange (Citrus sinensis L. Osbeck). Plant Cell Rep 7:680–683PubMedPubMedCentralGoogle Scholar
  32. Bertin P, Bouharmont J (1997) Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica 96:135–142CrossRefGoogle Scholar
  33. Bezier A, Lambert B, Baillieul F (2002) Study of defense related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120CrossRefGoogle Scholar
  34. Binh DQ, Heszky LE (1990) Restoration of regeneration potential of long term cell culture in rice (Oryza sativa L.) by salt pre-treatment. J Plant Physiol 136:336–340CrossRefGoogle Scholar
  35. Binh DQ, Heszky LE, Gyulai G, Csillag A (1992) Plant regeneration of NaCl pretreated cells from long-term suspension culture of rice (Oryza sativa L.) in high saline conditions. Plant Cell Tissue Organ Cult 29:75–82CrossRefGoogle Scholar
  36. Biswas J, Chowdhury B, Bhattacharya A, Mandal AB (2002) In vitro screening for increased drought tolerance in rice. In Vitro Cell Dev Biol-Plant 38:525–530CrossRefGoogle Scholar
  37. Bodnaryk RP (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35:301–305CrossRefGoogle Scholar
  38. Borkird C, Claes B, Caplan A, Simoens C, Van Montagu M (1991) Differential expression of water stress associated genes in tissues of rice plants. J Plant Physiol 138:591–595CrossRefGoogle Scholar
  39. Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115CrossRefGoogle Scholar
  40. Bouchereau A, Clossais-Besnard N, Bensaoud A, Leport L, Renard M (1996) Water stress effects on rapeseed quality. Eur J Agron 5:19–30CrossRefGoogle Scholar
  41. Bressan RA, Hasegawa PN, Handa AK (1981) Resistance of cultured higher plant cells to PEG-induced water stress. Plant Sci Lett 21:23–30CrossRefGoogle Scholar
  42. Brettell RIS, Thomas E, Ingram DS (1980) Reversion of Texas male-sterile cytoplasm maize in culture to give fertile, T-toxin resistant plants. Theor Appl Genet 58:55–58Google Scholar
  43. Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant-Microbe Interact 15(7):693–700PubMedCrossRefPubMedCentralGoogle Scholar
  44. Brown DCW, Thorpe TA (1995) Crop improvement through tissue culture. World J Microbiol Biotechnol 11:409–415PubMedCrossRefPubMedCentralGoogle Scholar
  45. Bruce TJ, Pickett JA (2007) Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol 10:387–392PubMedCrossRefPubMedCentralGoogle Scholar
  46. Bukovinszki A, Diveki Z, Csanyi M, Palkovics L, Balazs E (2007) Engineering resistance to PVY in different potato cultivars in a marker-free transformation system using a ‘Shooter mutant’ A. tumefaciens. Plant Cell Rep 26(4):459–465PubMedCrossRefPubMedCentralGoogle Scholar
  47. Burow M, Zhang ZY, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671PubMedCrossRefPubMedCentralGoogle Scholar
  48. Button J (1978) The effects of some carbohydrates on the growth and organization of Citrus ovular callus. Zeitschrift für Pflanzen physiologie 88(1):61–68CrossRefGoogle Scholar
  49. Byers T, Perry G (1992) Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu Rev Nutr 12:139–159PubMedCrossRefPubMedCentralGoogle Scholar
  50. Carlson PS (1973) Methionine sulfoximine-resistant mutants of tobacco. Science 180:1366–1368PubMedCrossRefPubMedCentralGoogle Scholar
  51. Capel J, Jarillo JA, Salinas J, Martinez-Zapater JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol 115(2):569–576PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chatenet M, Delage C, Ripolles M, Irey M, Lockhart BLE, Rott P (2001) Detection of sugarcane yellow leaf virus in quarantine and production of virus-free sugarcane by apical meristem culture. Plant Dis 85(11):1177–1180CrossRefGoogle Scholar
  53. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149CrossRefGoogle Scholar
  54. Chauhan H, Khurana P (2011) Use of double haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417PubMedCrossRefPubMedCentralGoogle Scholar
  55. Chawla HS (2009) Introduction to plant biotechnology. Oxford & IBH Publishing Company Pvt, New DelhiGoogle Scholar
  56. Chawla HS, Wenzel G (1987) In vitro selection for fusaric acid resistant barley plants. Plant Breed 99:159–163CrossRefGoogle Scholar
  57. Chen S, Andreasson E (2001) Update on glucosinolate metabolism and transport. Plant Physiol Biochem 39:743–758CrossRefGoogle Scholar
  58. Chen Y, Zahavi E, Barak P, Ummiel N (1980) Effects of salinity stresses on tobacco. I. The growth of N. tabacum callus cultures under seawater, NaCl, and mannitol stresses. Z Pflanzenphysiol Bd 98:141–153CrossRefGoogle Scholar
  59. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  60. Cieslik E, Leszczynska T, Filipiak-Florkiewicz A, Sikora E, Pisulewski PM (2007) Effects of some technological processes on glucosinolate contents in cruciferous vegetables. Food Chem 105:976–981CrossRefGoogle Scholar
  61. Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol Exp Appl 85:121–133CrossRefGoogle Scholar
  62. Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40:81–88CrossRefGoogle Scholar
  63. Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermos tolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342PubMedCrossRefPubMedCentralGoogle Scholar
  64. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedPubMedCentralCrossRefGoogle Scholar
  65. Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K (1996) The oxidative burst protects plants against pathogen attack:mechanism and role as an emergency signal for plant bio-defence—a review. Gene 179(1):45–51PubMedCrossRefPubMedCentralGoogle Scholar
  66. Doughty KJ, Porter AJR, Morton AM, Kiddle G, Bock CH, Wallsgrove R (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection by Alternaria brassicae (Berk.) Sacc. Ann Appl Biol 118:469–477CrossRefGoogle Scholar
  67. Duncan RR, Waskom RM, Nabors MW (1995) In vitro screening and field evaluation of tissue-culture-regenerated sorghum (Sorghum bicolor L. Moench) for soil stress tolerance. Euphytica 85:373–380CrossRefGoogle Scholar
  68. Durand J, Potrykus I, Donn G (1973) Plantes issues de protoplastes de Petunia. Zeitschrift für Pflanzen physiologie 69(1):26–34CrossRefGoogle Scholar
  69. Dvořák GJ, Rao MS, Tarn JQ (1973) Yielding in unidirectional composites under external loads and temperature changes. J Compos Mater 7(2):194–216CrossRefGoogle Scholar
  70. Dziadczyk P, Bolibok H, Tyrka M, Hortynski JA (2003) In vitro selection of strawberry (Fragaria×ananassa Duch.) clones tolerant to salt stress. Euphytica 132(1):49–55CrossRefGoogle Scholar
  71. Eason JR, Ryan D, Page B, Watson L, Coupe SA (2007) Harvested broccoli (Brassica oleracea) responds to high carbon dioxide and low oxygen atmosphere by inducing stress-response genes. Postharvest Biol Technol 43:358–365CrossRefGoogle Scholar
  72. Elavumoottil OC, Martin JP, Moreno ML (2003) Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L. Biol Plant 46:7–12CrossRefGoogle Scholar
  73. El-Dougdoug KA, El-Shamy MM (2011) Management of viral diseases in banana using certified and virus tested plant material. Afr J Microbiol Res 5(32):5923–5932Google Scholar
  74. El-Haris MK, Barakat MN (1998) Evaluation of the in vitro selected drought tolerant wheat lines under drought stress conditions. Alex J Agric Res 43:293–302Google Scholar
  75. Erdtman G (1972) Pollen morphology and plant taxonomy. Hafner Publishing, New YorkGoogle Scholar
  76. Errabii T, Gandonou CB, Essalmani H, Abrini J, Idomar M, Senhaji NS (2006) Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. Afri. J Biotechnol 5:1488–1493Google Scholar
  77. Fallon KM, Phillips R (1989) Responses to water stress in adapted and unadapted carrot cell suspension cultures. J Expt Bot 40:681–687CrossRefGoogle Scholar
  78. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  79. Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) Worldwide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15CrossRefGoogle Scholar
  80. Franklin G, Lakshmi SG (2003) Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants. Plant Cell Rep 21:549–554PubMedPubMedCentralGoogle Scholar
  81. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K (2011) Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci 16(2):108–116PubMedCrossRefPubMedCentralGoogle Scholar
  82. Fuime F, Fuime G (2003) Use of culture filtrates of Pyrenochaeta lycopersici in tests for selecting tolerant varieties of tomato. J Plant Pathol 85:131–133Google Scholar
  83. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164PubMedCrossRefPubMedCentralGoogle Scholar
  84. Gaetan SA (2005) Occurrence of Fusarium wilt on canola caused by Fusarium oxysporum f. sp. conglutinans in Argentina. Plant Dis 89:432CrossRefGoogle Scholar
  85. Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue Organ Cult 87:9–16CrossRefGoogle Scholar
  86. Ganesan M, Jayabalan N (2006) Isolation of disease-tolerant cotton (Gossypium hirsutum L. cv. SVPR 2) plants by screening somatic embryos with fungal culture filtrate. Plant Cell Tissue Organ Cult 87:273–284CrossRefGoogle Scholar
  87. Gangopadhyay G, Basu S, Gupta S (1997) In vitro selection and physiological characterization of NaCl and mannitol adapted callus lines in Brassica juncea. Plant Cell Tissue Organ Cult 50:161–169CrossRefGoogle Scholar
  88. Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology, application to plant tissue cultures. Plant Growth Regul 37(3):263–285CrossRefGoogle Scholar
  89. Gayatri MC, Roopa Darshini V, Kavyashree R (2005) Selection of turmeric callus for tolerant to culture filtrate of Pythium graminicolum and regeneration of plants. Plant Cell Tissue Organ Cult 83:33–40CrossRefGoogle Scholar
  90. Gebczynski P, Lisiewska Z (2006) Comparison of the level of selected antioxidative compounds in frozen broccoli produced using traditional and modified methods. Innov Food Sci Emerg Technol 7:239–245CrossRefGoogle Scholar
  91. Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci U S A 74:5113–5117PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gentile A, Continella G, Tribulato E, Vardi A (1992) Differential responses of citrus calli and protoplasts to the culture filtrate and toxin of Phoma tracheiphila. Theor Appl Genet 83:759–764PubMedPubMedCentralGoogle Scholar
  93. Gentile A, Tribulato E, Deng ZN, Galun E, Fluh R, Vardi A (1993) Nucellar callus of ‘Femminello’ lemon, selected for tolerance to Phoma tracheiphila toxin, shows enhanced release of chitinase and glucanase into the culture medium. Theor Appl Genet 86:527–532PubMedCrossRefPubMedCentralGoogle Scholar
  94. Giri A, Narasu M (2000) Transgenic hairy roots: recent trends and application. Biotechnol Adv 18:1–22PubMedCrossRefPubMedCentralGoogle Scholar
  95. Gitz DC, Liu-Gitz L (2003) How do UV photomorphogenic responses confer water stress tolerance? Photochem Photobiol 78(6):529–534PubMedCrossRefPubMedCentralGoogle Scholar
  96. Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR (2008) The pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant-Microbe Interact 21:361–370PubMedCrossRefPubMedCentralGoogle Scholar
  97. Gols R, Raaijmakers CE, van Dam NM, Dicke M, Bukovinszky T, Harvey JA (2007) Temporal changes affect plant chemistry and tritrophic interactions. Basic Appl Ecol 8:421–433CrossRefGoogle Scholar
  98. Good AG, Zaplachinski ST (1994) The effects of drought stress on free amino-acid accumulation and protein-synthesis in Brassica napus. Physiol Plant 90:9–14CrossRefGoogle Scholar
  99. Gordon TR, Okamoto D, Milgroom MG (1992) The structure and interrelationship of fungal populations in native and cultivated soils. Mol Ecol 1:241–249CrossRefGoogle Scholar
  100. Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B 355:1499–1510CrossRefGoogle Scholar
  101. Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138(1):330–340PubMedPubMedCentralCrossRefGoogle Scholar
  102. Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae: analysis, biosynthesis, chemistry and dietary effects. J Hortic Sci Biotechnol 73:1–18CrossRefGoogle Scholar
  103. Guha S, Maheswari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  104. Haag J (2013) Improving photosynthetic efficiency in sports turf. Xlibris Corporation, Bloomington, p 43Google Scholar
  105. Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math-Naturwiss Kl Abt J 111:69–92Google Scholar
  106. Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89(11):1826–1842PubMedCrossRefPubMedCentralGoogle Scholar
  107. Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrates of Xanthomonas campestris pv pruni and regeneration of resistant plants. Theor Appl Genet 76:865–869PubMedCrossRefPubMedCentralGoogle Scholar
  108. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22Google Scholar
  109. Harding K (2010) Plant and algal cryopreservation: issues in genetic integrity, concepts in cryobionomics and current applications in cryobiology. Aspac J. Mol. Biol. Biotechnol 18(1):151–154Google Scholar
  110. Harms CT, Oertli JJ (1985) The use of osmotically adapted cell cultures to study salt tolerance in vitro. J Plant Physiol 120:29–38CrossRefGoogle Scholar
  111. Hartman CL, McCoy TJ, Knous TR (1984) Selection of alfalfa (Medicago sativa) cell lines and regeneration of plants resistant to the toxin(s) produced by Fusarium oxysporum f. sp. medicaginis. Plant Sci Lett 34:183–194CrossRefGoogle Scholar
  112. Hashmi U, Shafqat S, Khan F, Majid M, Hussain H, Kazi AG, John R, Ahmad P (2015) Plant exomics: Concepts, applications and methodologies in crop improvement. Plant Signal Behav 10(1):e976152CrossRefGoogle Scholar
  113. Hasissou D, Bouharmont J (1994) In vitro selection and characterization of drought tolerant plants of durum wheat (Triticum durum desf). Agronomy 14:65–70CrossRefGoogle Scholar
  114. Hassan NM, Serag MS, El-Feky FM (2004) Changes in nitrogen content and protein profiles following in vitro selection of NaCl resistant mung bean and tomato. Acta Physiol Plant 26:165–175CrossRefGoogle Scholar
  115. Hassan NM, Serag MS, El-Feky FM, Nemat Alla MM (2008) In vitro selection of mung bean and tomato for improving tolerance to NaCl. Ann Appl Biol 152:319–330CrossRefGoogle Scholar
  116. Hassan NS, Wilkins DA (1988) In vitro selection for salt tolerant lines in Lycopersicon peruvianum. Plant Cell Rep 7:463–466PubMedPubMedCentralGoogle Scholar
  117. Hauser LA, Crovello TJ (1982) Numerical analysis of generic relationships in Thelypodieae (Brassicaceae). Syst Bot:249–268CrossRefGoogle Scholar
  118. Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41CrossRefGoogle Scholar
  119. Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335Google Scholar
  120. He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74CrossRefGoogle Scholar
  121. Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89(5):503–512PubMedPubMedCentralCrossRefGoogle Scholar
  122. Hinchee MAW, Corbin DR, Armstrong CL, Fry JE, Sato SS, Deboer DL, Petersen WL, Armstrong TA, Connor-Wand DY, Layton JG, Horsch RB (1994) In: Vasil LK, Thorpe TA (eds) Plant transformation in plant cell and tissue culture. Kluwer Academic, Dordrecht, pp 231–270Google Scholar
  123. Hossain Z, Mandal AKA, Datta SK, Biswas AK (2007) Development of NaCl tolerant line in Chrysanthemum morifolium Ramat. Through shoot organogenesis of selected callus line. J Biotechnol 129:658–667PubMedCrossRefPubMedCentralGoogle Scholar
  124. Howlett BJ, Idnurm A, Pedras MS (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  125. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48(2):121–127CrossRefGoogle Scholar
  126. Husain MK, Anis M (2009) Rapid in vitro multiplication of Melia azedarach L. (a multipurpose woody tree). Acta Physiol Plant 31(4):765–772CrossRefGoogle Scholar
  127. Hussain A, Naz S, Nazir H, Shinwari ZK (2011) Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pak J Bot 43(2):1069–1078Google Scholar
  128. Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. In: In: Recent advances in plant in vitro culture. Intech Open Access Publisher, RijekaGoogle Scholar
  129. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47(1):377–403PubMedCrossRefPubMedCentralGoogle Scholar
  130. IPCC (2008) In: Kundzewicz ZW, Palutikof J, Wu S (eds) Climate change and water. Technical paper of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  131. Jafri SMH (1973) Brassicaceae. In: Nasir E, Ali SI (eds) Flora of West Pakistan, vol 55. Ferozsons, Karachi, pp 1–308Google Scholar
  132. Jahangir M, Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R (2009) Healthy and unhealthy plants: the effect of stress on the metabolism of Brassicaceae. Envir Exp Bot 67:23–33CrossRefGoogle Scholar
  133. Jahangir M, Kim HK, Choi YH, Verpoorte R (2008) Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem 107:362–368CrossRefGoogle Scholar
  134. Jain RK, Jain S, Nainawatee HS, Chowdhury JB (1990) Salt tolerance in Brassica juncea L. I. In vitro selection, agronomic evaluation and genetic stability. Euphytica 48:141–152CrossRefGoogle Scholar
  135. Jan VS, Macedo CD, Kinet JM, Bauharmont J (1997) Selection of Al-resistant plants from a sensitive rice cultivar, using somaclonal variation, in vitro and hydroponic cultures. Euphytica 97:303CrossRefGoogle Scholar
  136. Janchen E (1942) Das system der cruciferan. Oester Bot Z 91:1–28CrossRefGoogle Scholar
  137. Janeczko A, Koscielniak J, Pilipowicz M, Szarek-Lukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298CrossRefGoogle Scholar
  138. Jayasankar S, Litz RE (1998) Characterization of resistance in mango embryogenic cultures selected for resistance to Colletotrichum gloeosporioides culture filtrate and phytotoxin. Theor Appl Genet 96:823–831CrossRefGoogle Scholar
  139. Jayashankar S, Li Z, Gray DJ (2000) In vitro selection of Vitis vinifera Chardonnay with Elsinoe ampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta 211:200–208CrossRefGoogle Scholar
  140. Jeong GA, Park DH (2007) Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system. Appl Biochem Biotechnol 130:436–446CrossRefGoogle Scholar
  141. John R, Anjum NA, Sopory SK, Akram NA, Ashraf M (2016) Some key physiological and molecular processes of cold acclimation. Biol Plant 60(4):603–618CrossRefGoogle Scholar
  142. Jones LE, Hildebrandt AC, Riker AJ, Wu JH (1960) Growth of somatic tobacco cells in microculture. Am J Bot:468–475CrossRefGoogle Scholar
  143. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364PubMedCrossRefGoogle Scholar
  144. Kao KN, Keller WA, Miller RA (1970) Cell division in newly formed cells from protoplasts of soybean. Exp Cell Res 62(2):338–340PubMedCrossRefGoogle Scholar
  145. Karadimova M, Djambova G (1993) Increased NaCl-tolerance in wheat (Triticum aestivum L. and T. durum desf.) through in vitro selection. In Vitro Cell Dev Biol Plant 29:180–182CrossRefGoogle Scholar
  146. Karunaratne S, Santha S, Kovoorl A (1991) An in vitro assay for drought-tolerant coconut germplasm. Euphytica 53:25–30CrossRefGoogle Scholar
  147. Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239Google Scholar
  148. Kasurinen A, Biasi C, Holopainen T, Rousi M, Maenpaa M, Oksanen E (2012) Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiol 32:737–751PubMedCrossRefGoogle Scholar
  149. Kayum MA, Kim HT, Nath UK, Park JI, Kho KH, Cho YG, I-Sup N (2016) Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: a review. Plant Breed Biotech 4(2):135–144CrossRefGoogle Scholar
  150. Khan RS, Alam SS, Munir I, Azadi P, Nakamura I, Mii M (2011) Botrytis cinerea resistant marker-free Petunia hybrida produced using the MAT vector system. Plant Cell Tissue Organ Cult 106:11–20CrossRefGoogle Scholar
  151. Khan T, Krupadanam D, Anwar Y (2008) The role of phytohormone on the production of berberine in the calli culture of an endangered medicinal plant, turmeric (Coscinium fenustratum L.) Afr J Biotechnol 7:3244–3246Google Scholar
  152. Kim JS, Lee SY, Park SU (2008) Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol 7:3788–3790Google Scholar
  153. Kim OT, Bang KH, Shin YS, Lee MJ, Jang SJ, Hyun DY, Kim YC, Senong NS, Cha SW, Hwang B (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asitica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep 26:1914–1949Google Scholar
  154. Kirti PB, Hadi S, Kumar PA (1991) Production of sodium-chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. TAG Theor Appl Genet 83(2):233–237PubMedCrossRefGoogle Scholar
  155. Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161:1685–1696PubMedPubMedCentralGoogle Scholar
  156. Koc NK, Bas B, Koc M, Kusek M (2009) Investigations of in vitro selection for salt tolerant lines in sour orange (Citrus aurantium L.) Biotechnology 8:155–159CrossRefGoogle Scholar
  157. Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Mo Bot Gard:151–171CrossRefGoogle Scholar
  158. Koch MA, Kiefer C (2006) Molecules and migration: biogeographical studies in cruciferous plants. Plant Syst Evol 259(2-4):121–142CrossRefGoogle Scholar
  159. Koch MA, Mummenhoff K (2006) Editorial: evolution and phylogeny of the Brassicaceae. Plant Syst Evol 259(2):81–83CrossRefGoogle Scholar
  160. Kranner I, Roach T, Beckett RP, Whitaker C, Minibayeva FV (2010) Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol 167(10):805–811PubMedCrossRefPubMedCentralGoogle Scholar
  161. Krause IR, Mankowska G, Lukaszewicz M, Szopa J (2003) Regeneration of flax (Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to Fusarium oxysporum. Plant Cell Rep 22:110–116CrossRefGoogle Scholar
  162. Kripkyy O, Kerkeb L, Molina A, Belver A, Rodrigues Rosales P, Donaire PJ (2001) Effects of salt-adaptation and salt-stress on extracellular acidification and microsome phosphohydrolase activities in tomato cell suspensions. Plant Cell Tissue Organ Cult 66:41–47CrossRefGoogle Scholar
  163. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  164. Kumar JV, Ranjitha Kumari BD, Sujatha G, Castano E (2008) Production of plants resistant to Alternaria carthami via organogenesis and somatic embryogenesis of safflower cv. NARI-6 treated with fungal culture filtrates. Plant Cell Tissue Organ Cult 93:85–96CrossRefGoogle Scholar
  165. Kumar V, Sharma DK (1989) Isolation and characterization of sodium chloride resistant callus culture of Vigna radiata (L.) Wilczek var. radiata. J Exp Bot 40:143–147CrossRefGoogle Scholar
  166. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548PubMedCrossRefPubMedCentralGoogle Scholar
  167. Kusznierewicz B, Smiechowska A, Bartoszek A, Namiesnik J (2008) The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem 108:853–861PubMedCrossRefPubMedCentralGoogle Scholar
  168. Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104(4):1341–1349PubMedPubMedCentralCrossRefGoogle Scholar
  169. Lee SY, Cho SJ, Park MH, Kim YK, Choi JI, Park SU (2007) Growth and rutin production in hairy root culture of buck weed (Fagopyruum esculentum). Prep Biochem Biotechnol 37:239–246PubMedCrossRefGoogle Scholar
  170. Lee SY, Lee JH, Kwon TO (2003) Selection of salt-tolerant doubled haploids in rice anther culture. Plant Cell Tissue Organ Cult 74:143–149CrossRefGoogle Scholar
  171. Lee-Parsons CWT, Rogce AJ (2006) Precursor limitations in methyl jasmonate-induced Catharanthus roseus cell cultures. Plant Cell Rep 25:607–612PubMedCrossRefGoogle Scholar
  172. Lemoine ML, Civello PM, Martinez GA, Chaves AR (2007) Influence of postharvest UV-C treatment on refrigerated storage of minimally processed broccoli (Brassica oleracea var. italica). J Sci Food Agric 87:1132–1139CrossRefGoogle Scholar
  173. Levall MW, Bornman JF (1993) Selection in vitro for UV-tolerant sugar beet (Beta vulgaris) somaclones. Physiol Plant 88:37–43CrossRefGoogle Scholar
  174. Levitt J (1980) Responses of plants to environmental stress, Volume 1: Chilling, freezing, and high temperature stresses. Academic Press, New YorkCrossRefGoogle Scholar
  175. Li J, Lin X, Chen A, Peterson T, Ma K, Bertzky M, Ciais P, Kapos V, Peng C, Poulter B (2013) Global priority conservation areas in the face of 21st century climate change. PLoS One 8:e54839PubMedPubMedCentralCrossRefGoogle Scholar
  176. Liang YS, Choi YH, Kim HK, Linthorst HJM, Verpoorte R (2006) Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by two-dimensional NMR spectroscopy. Phytochemistry 67:2503–2511PubMedCrossRefPubMedCentralGoogle Scholar
  177. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148(1–2):4–14CrossRefGoogle Scholar
  178. Lisiewska Z, Kmiecik W, Korus A (2008) The amino acid composition of kale (Brassica oleracea L. var. acephala), fresh and after culinary and technological processing. Food Chem 108:642–648PubMedCrossRefPubMedCentralGoogle Scholar
  179. Liu T, Staden JV (2000) Selection and characterization of sodium chloride-tolerant callus of Glycine max (L.) Merr cv. Acme. Plant Growth Reg 31:195–207CrossRefGoogle Scholar
  180. Lopez-Berenguer C, Martinez-Ballesta MC, Garcia-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174:321–328CrossRefGoogle Scholar
  181. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med 41:1727–1746PubMedCrossRefPubMedCentralGoogle Scholar
  182. Lu S, Peng X, Guo Z, Zhang G, Wang Z, Wang C, Pang C, Fan Z, Wang J (2007) In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis and C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep 26:1413–1420PubMedCrossRefPubMedCentralGoogle Scholar
  183. MacDonald MV, Ingram DS (1985) In vitro selection for resistance to Alternaria brassicicola in Brassica napus ssp. oleifera (winter oilseed rape) using partially purified culture filtrates. Cruciferae Newsl 10:97–100Google Scholar
  184. Maier FJ, Oettler G (1992) Selection for the Fusarium toxin deoxynivalenol in callus cultures of triticale. In: Third European Fusarium Seminar, vol 22–24. IHAR Radzikow, Poland, pp 43–49Google Scholar
  185. Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69(2):157–166CrossRefGoogle Scholar
  186. Marana JP, Miglioranza E, De Faria RT (2009) In vitro establishment of Jacaratia spinosa (Aubl.) ADC. Semina-Ciencias Agrarias 30(2):271–274CrossRefGoogle Scholar
  187. Marconi PL, Selten LM, Cslcena EN, Alvarez MA, Pitta-Alvarez SI (2008) Changes in growth and tropane alkaloid production in long term culture of hairy roots of Brugmansia candida. Elect J Integr Biosci 3:38–44Google Scholar
  188. Martin N, Muller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25CrossRefGoogle Scholar
  189. Matsumoto K, Barbosa ML, Souza LAC, Teixeira JB (1995) Race 1 Fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84:67–71CrossRefGoogle Scholar
  190. Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of “danger”. J Chem Ecol 27:2233–2252PubMedCrossRefPubMedCentralGoogle Scholar
  191. McCoy TJ (1987) Characterization of alfalfa (Medicago sativa L.) plants regenerated from selected NaCI tolerant cell lines. Plant Cell Rep 6:417–422PubMedCrossRefPubMedCentralGoogle Scholar
  192. McHughen A (1987) Salt tolerance through increased vigor in a flax line (STS-II) selected for salt tolerance in vitro. Theor Appl Genet 74:727–732PubMedCrossRefPubMedCentralGoogle Scholar
  193. Mehrotra S, Kukreja AK, Khanuja SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Elec J Biotechnol 11:717–728CrossRefGoogle Scholar
  194. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem feeding and chewing insects. Plant Physiol 138:1149–1162PubMedPubMedCentralCrossRefGoogle Scholar
  195. Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308PubMedPubMedCentralCrossRefGoogle Scholar
  196. Mitchell-Olds T, Al-Shehbaz IA, Koch M, Sharbel TF (2005) Crucifer evolution in the post-genomic era. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International, Cambridge, MA, pp 119–137CrossRefGoogle Scholar
  197. Mithen R (2001) Glucosinolates—biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103CrossRefGoogle Scholar
  198. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefPubMedCentralGoogle Scholar
  199. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125PubMedCrossRefPubMedCentralGoogle Scholar
  200. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefPubMedCentralGoogle Scholar
  201. Mohamed MAH, Harris PJC, Henderson J (2000) In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci 159:213–222PubMedPubMedCentralCrossRefGoogle Scholar
  202. Mohan N, Nikdad S, Singh G (2011) Studies on seed germination and embryo culture of Jatropha curcas L. under in vitro conditions. Research Article, Biotechnol, Bioinf, Bioeng 1(2):187–194Google Scholar
  203. Moreno DA, Carvajal M, Lopez-Berenguer C, Garcia-Viguera C (2006) Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal 41:1508–1522PubMedCrossRefPubMedCentralGoogle Scholar
  204. Mostageer A, Elshihy OM (2003) Establishment of salt tolerant somatic hybrid through protoplast fusion between rice and ditch reed. Arab J Biotech 6(1):01–12Google Scholar
  205. Motomura T, Hidaka T, Akihama T, Omura M (1997) Protoplast fusion for production of hybrid plants between citrus and its related genera. J Japan Soc Hortic Sci 65:685–692CrossRefGoogle Scholar
  206. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefPubMedCentralGoogle Scholar
  207. Mummenhoff K, Franzke A, Koch M (1997) Molecular data reveal convergence in fruit characters used in the classification of Thlaspisl(Brassicaceae). Bot J Linn Soc 125(3):183–199Google Scholar
  208. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497CrossRefGoogle Scholar
  209. Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Powers JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of Withanolide A. Integr Plant Biol J 50:915–981CrossRefGoogle Scholar
  210. Nabors MW, Gibbs GE, Bernstein CS, Meis ME (1980) NaCl-tolerant tobacco plants from cultured cells. Z Pflanzenphysiol 97:13–17CrossRefGoogle Scholar
  211. Nagata T, Takabe I (1971) Planting of isolated tobacco mesophyll protoplasts on agar. Planta 99:12–20PubMedCrossRefPubMedCentralGoogle Scholar
  212. Nanakorn M, Jiamjetjaroon W, Suwanawong S, Wongwattana C, Shim IS (2003) In vitro selection of salt-tolerant cell lines in kallar grass (Diplachne fusca L.) Weed Biol Manage 3:49–52CrossRefGoogle Scholar
  213. Nelke M, Nowak J, Wright JM, McLean NL, Laberge S, Castonguay Y, Vezina LP (1999) Enhanced expression of a cold-induced gene coding for a glycine-rich protein in regenerative somaclonal variants of red clover (Trifolium pratense L.) Euphytica 105:211–217CrossRefGoogle Scholar
  214. Navarre DA, Wolpert TJ (1999) Victorin induction of an apoptotic/senescence–like response in oats. Plant Cell 11(2):237–249PubMedPubMedCentralGoogle Scholar
  215. O’Kane SL, Al-Shehbaz IA (2003) Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard 90:603–612CrossRefGoogle Scholar
  216. Ochatt SJ, Marconi PL, Radice S, Arnozis PA, Caso OH (1999) In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell Tissue Organ Cult 55:1–8CrossRefGoogle Scholar
  217. Ochatt SJ, Power JB (1989) Selection for salt and drought tolerance in protoplast- and explant-derived tissue cultures of Colt cherry (Prunus avium×pseudocerasus). Tree Physiol 5:259–266PubMedCrossRefPubMedCentralGoogle Scholar
  218. Okere AU, Adegey A (2011) In vitro propagation of an endangered medicinal timber species Khaya grandifoliola C. Dc. Afr J Biotechnol 10(17):3335–3339CrossRefGoogle Scholar
  219. Olmos E, Hernandez JA, Sevilla F, Hellin E (1994) Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J Plant Physiol 144:594–598CrossRefGoogle Scholar
  220. Palazon J, Pinol MT, Cusido RM, Morales C, Bonfill M (1997) Application of transformed root technology to the production of bioactive metabolites. Recent Res Dev Plant Physiol 1:125–143Google Scholar
  221. Park SU, Lee SY (2009) Anthraquinone production by hairy root culture of Rubia akane Nakai: influence of media and auxin treatment. Sci Res Essay J 4:690–693Google Scholar
  222. Patnaik J, Debata BK (1997a) In vitro selection of NaCl tolerant callus lines of Cymbopogon martinii (Roxb.) Wats. Plant Sci 124:203–210CrossRefGoogle Scholar
  223. Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Dienatu ̈rlichen Pflanzenfamilien. Wilhelm Engelmann, Leipzig, pp 145–206Google Scholar
  224. Patnaik J, Debata BK (1997b) Regeneration of plantlets from NaCl tolerant callus lines of Cymbopogon martinii (Roxb.) Wats. Plant Sci 128:67–74CrossRefGoogle Scholar
  225. Pedras ASC, Jha M, Minic Z, Okeola OG (2007) Isosteric probes provide structural requirements essential for detoxification of the phytoalexin brassinin by the fungal pathogen Leptosphaeria maculans. Bioorg Med Chem 15:6054–6061PubMedCrossRefPubMedCentralGoogle Scholar
  226. Pedras MSC, Ahiahonu PWK (2005) Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66:391–411PubMedCrossRefPubMedCentralGoogle Scholar
  227. Pedras MSC, Chumala PB, Suchy M (2003a) Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity. Phytochemistry 64:949–956PubMedCrossRefPubMedCentralGoogle Scholar
  228. Pedras MSC, Jha M, Ahiahonu PWK (2003b) The synthesis and biosynthesis of phytoalexins produced by cruciferous plants. Curr Org Chem 7:1635–1647CrossRefGoogle Scholar
  229. Pedras MSC, Zheng QA, Gadagi RS, Rimmer SR (2008) Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 69:894–910PubMedCrossRefPubMedCentralGoogle Scholar
  230. Pérez-Clemente RM, Gómez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. In Recent advances in plant in vitro culture, InTechGoogle Scholar
  231. Perez-Lopez U, Miranda-Apodaca J, Munoz-Rueda A, Mena-Petite A (2013) Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J Plant Physiol 170:86–93CrossRefGoogle Scholar
  232. Petersen IL, Hansen HCB, Ravn HW, Sorensen JC, Sorensen H (2007) Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pest Biochem Physiol 89:220–229CrossRefGoogle Scholar
  233. Pinto E, Sigaud‐kutner TC, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae 1. J Phycol 39:1008–1018CrossRefGoogle Scholar
  234. Piqueras A, Hernandez JA, Olmos E, Hellin E, Sevilla F (1996) Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tissue Organ Cult 45:53–60CrossRefGoogle Scholar
  235. Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010) Hairy root cultures for secondary metabolites production. ISBN: 978-1-4419-7346-7Google Scholar
  236. Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci Technol 40:1–11CrossRefGoogle Scholar
  237. Potrykus I, Harms CT, Lörz H (1979) Multiple-drop-array (MDA) technique for the large-scale testing of culture media variations in hanging microdrop cultures of single cell systems. I: the technique. Plant Sci Lett 14(3):231–235CrossRefGoogle Scholar
  238. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866PubMedPubMedCentralCrossRefGoogle Scholar
  239. Price RA, Palmer JD, Al-Shehbaz IA (1994) Systematic relationships of arabidopsis: a molecular and morphological perspective. Cold Spring Harbor Monograph Archive 27:7–19Google Scholar
  240. Purkayastha J, Sugla T, Paul A, Maumdar P, Basu A, Solleti SK, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54:13–20CrossRefGoogle Scholar
  241. Purohit M, Srivastava S, Srivastava PS (1998) Stress tolerant plants through tissue culture. In: Srivastava PS (ed) Plant tissue culture and molecular biology: application and prospects. Narosa Publishing House, New Delhi, pp 554–578Google Scholar
  242. Purushotham MG, Patil V, Raddey PC, Prasad TG, Vajranabhaiah SN (1998) Development of in vitro PEG stress tolerant cell lines in two groundnut (Arachis hypogaea L.) genotypes. Indian J Plant Physiol 3:49–51Google Scholar
  243. Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734CrossRefGoogle Scholar
  244. Rafiq M, Dahot MU, Mangrio SM, Naqvi HA, Qarshi IA (2007) In vitro clonal propagation and biochemical analysis of field established Stevia rebaudiana Bertoni. Pak J Bot 39(7):2467–2474Google Scholar
  245. Rahman MH, Krishnaraj S, Thorpe TA (1995) Selection for salt tolerance in vitro using microspore-derived embryos of Brassica napus cv. Topas, and the characterization of putative tolerant plants. In Vitro Cell Dev Biol Plant 31:116–121CrossRefGoogle Scholar
  246. Rahnama H, Hasanloo T, Shams MR, Sepehrifar R (2008) Silymarin production by hairy root culture of Silybium marianum (L.) Gaertn. Iranian Biotechnol J 6:113–118Google Scholar
  247. Rai MK, Rajwant KK, Rohtas S, Manu PG, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environ Exp Bot 71:89–98CrossRefGoogle Scholar
  248. Ramachandra SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:1001–1153Google Scholar
  249. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses tocombinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794PubMedPubMedCentralCrossRefGoogle Scholar
  250. Raveh D, Eliezer H, Esra G (1973) In vitro culture of tobacco protoplasts: use of feeder techniques to support division of cells plated at low densities. In Vitro Cell Dev Biol Plant 9(3):216–222CrossRefGoogle Scholar
  251. Remotti PC, Loffler HJM, Vanvlotendoting L (1997) Selection of cell-lines and regeneration of plants resistant to fusaric acid from Gladiolus grandiflorus cv. Peter pears. Euphytica 96:237–245CrossRefGoogle Scholar
  252. Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2013) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37(5):1059–1073PubMedCrossRefPubMedCentralGoogle Scholar
  253. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151PubMedPubMedCentralCrossRefGoogle Scholar
  254. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedPubMedCentralCrossRefGoogle Scholar
  255. Roat C, Ramawat KG (2009) Elicitor induced accumulation of stilbenes in cell suspension cultures of Cayratia trifoliata (L.) Domin. Plant Biotechnol Rep J 3:135–138CrossRefGoogle Scholar
  256. Rollins RC, Banerjee UC (1975) Atlas of the trichomes of Lesquerella.(Cruciferae). Bussey Institution, Cambridge: MA, p 48Google Scholar
  257. Rollins RC, Banerjee UC (1976) Trichomes in studies of the Cruciferae. In: Vaughan JG, Macleod AJ, Jones BMG (eds) The biology and chemistry of the cruciferaeGoogle Scholar
  258. Rollins RC, Banerjee UC (1979) Pollens of the Cruciferae. Publ Bussey Inst Harvard Univ 1979:33–64Google Scholar
  259. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215Google Scholar
  260. Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L (1999) Inactivation of brassinosteroid biological activity by a salicylate inducible steroid sulfotransferase from Brassica napus. J Biol Chem 274:20925–20930PubMedCrossRefGoogle Scholar
  261. Rout GR, Sahoo S (2007) In vitro selection and plant regeneration of copper tolerant plants from leaf explants of Nicotiana tabacum L. cv. ‘Xanthi. Plant Breed 126:403–409CrossRefGoogle Scholar
  262. Rout GR, Samantaray S, Das P (1999) In vitro selection and biochemical characterization of zinc and manganese adapted callus in Brassica spp. Plant Sci 146:89–100CrossRefGoogle Scholar
  263. Rout GR, Senapati SK, Panda JJ (2008) Selection of salt tolerant plants of Nicotiana tabacum L. through in vitro and its biochemical characterization. Acta Biol Hung 59:77–92PubMedCrossRefGoogle Scholar
  264. Rout GR (2004) Effect of cytokinins and auxin on micropropagation of Clitoria ternatea L. Biol Lett 41(1):21–26Google Scholar
  265. Roy B, Mandal AB (2005) Towards development of Al-toxicity tolerant lines in indica rice by exploiting somaclonal variation. Euphytica 145:221–227CrossRefGoogle Scholar
  266. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci 98(24):14150–14155CrossRefGoogle Scholar
  267. Sabbah S, Tal M (1990) Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress. Plant Cell Tissue Organ Cult 21:119–124CrossRefGoogle Scholar
  268. Sacristan MD (1982) Resistance response to Phoma lingum of plant regenerated from selected cells and embryogenic cultures of haploid Brassica napus. Theor Appl Genet 61:193–200PubMedGoogle Scholar
  269. Safarnejad A, Collin HA, Bruce KD, McNeilly T (1996) Characterization of alfalfa (Medicago sativa L.) following in vitro selection for salt tolerance. Euphytica 92(1-2):55–61Google Scholar
  270. Saini R, Jaiwal PK (2002) Age, position in mother seedling, orientation, and polarity of the epicotyl segments of blackgram (Vigna mungo L. Hepper) determines its morphogenic response. Plant Sci 163(1):101–109CrossRefGoogle Scholar
  271. Samantaray S, Rout GR, Das P (1999) In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci 143:201–209CrossRefGoogle Scholar
  272. Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) Link in vitro. J Plant Physiol 158:1281–1290CrossRefGoogle Scholar
  273. Santos-Diaz MS, Ochoa-Alejo N (1994) PEG–tolerant cell clones of chili pepper: growth, osmotic potentials and solute accumulation. Plant Cell Tissue Organ Cult 37:1–8CrossRefGoogle Scholar
  274. Sasaki H, Ichimura K, Okada K, Oda M (1998) Freezing tolerance and soluble sugar contents affected by water stress during cold-acclimation and de-acclimation in cabbage seedlings. Sci Hortic 76:161–169CrossRefGoogle Scholar
  275. Sasson A (1993) Biotechnologies in developing countries, present and future, vol 1. United Nations Educational, Scientific and Cultural Organization, ParisGoogle Scholar
  276. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537CrossRefGoogle Scholar
  277. Schonhof I, Klaring HP, Krumbein A, Claussen W, Schreiner M (2007) Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric Ecosyst Environ 119:103–111CrossRefGoogle Scholar
  278. Schulz O (1936) Cruciferae. Die natürl. Pflanzenfam. Engler A, Prantl K: 2Google Scholar
  279. Sengar AS, Thind KS, Kumar B, Pallavi M, Gosal SS (2009) In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.) Plant Growth Regul 58:201–209CrossRefGoogle Scholar
  280. Sengar RS, Chaudhary R, Tyagi SK (2010) Present status and scope of floriculture developed through different biological tools. Res J Agri Sci 1(4):306–314Google Scholar
  281. Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotox Environ Safe 71:76–85CrossRefGoogle Scholar
  282. Shalaka DK, Sandhya P (2009) Micropropagation and organogenesis in Adhatoda vasica for the estimation of vasine. Pharm Mag 5:539–363Google Scholar
  283. Shankhdhar D, Shankhdhar SC, Mani SC, Pant RC (2000) In vitro selection for salt tolerance in rice. Biol Plant 43:477–480CrossRefGoogle Scholar
  284. Shrivastava N, Patel T, Srivastava A (2006) Biosynthetic potential of in vitro grown callus cells of Cassia senna L. var. senna. Curr Sci J 90:1472–1473Google Scholar
  285. Sikora E, Cieslik E, Leszczynska T, Filipiak-Florkiewicz A, Pisulewski PM (2008) The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem 107:55–59CrossRefGoogle Scholar
  286. Singh J, Upadhyay AK, Prasad K, Bahadur A, Rai M (2007) Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J Food Compos Anal 20:106–112CrossRefGoogle Scholar
  287. Singh M, Jaiswal U, Jaiswal VS (2003) In vitro selection of NaCl-tolerant callus line and regeneration of plantlets in a bamboo (Dendrocalamus strictus Nees.) In Vitro Cell Dev Biol-Plant 39:229–233CrossRefGoogle Scholar
  288. Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Saf 62:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  289. Skrzypek Z, Wysokinsku H (2003) Sterols and titerpenes in cell cultures of Hyssopus officinalis L. Ver Lag der Zeitschrift fur Naturforschung. D. 312Google Scholar
  290. Smith CJ (1996) Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132:1–45CrossRefGoogle Scholar
  291. Smith RH, Bhaskaran S, Miller FR (1985) Screening for drought tolerance in sorghum using cell culture. In Vitro Cell Dev Biol Plant 21:541–545CrossRefGoogle Scholar
  292. Spallek T, Gan P, Kadota Y, Shirasu K (2018) Same tune, different song — cytokinins as virulence factors in plant–pathogen interactions? Curr Opin Plant Biol 44:82–87PubMedCrossRefPubMedCentralGoogle Scholar
  293. Song HS, Lim SM, Widholm JM (1994) Selection and regeneration of soybeans resistant to the pathotoxic culture filtrates of Septoria glycines. Phytopathology 84:948–951CrossRefGoogle Scholar
  294. Song LJ, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224PubMedCrossRefGoogle Scholar
  295. Sousa C, Pereira DM, Pereira JA, Bento A, Rodrigues MA, Dopico-Garcia S, Valentao P, Lopes G, Ferreres F, Seabra RM, Andrade PB (2008) Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics: influence of fertilizers. J Agric Food Chem 56:2231–2239PubMedCrossRefGoogle Scholar
  296. Soylu S (2006) Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Sci 170:942–952CrossRefGoogle Scholar
  297. Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res 149:86–96PubMedCrossRefPubMedCentralGoogle Scholar
  298. Sudha G, Ravishankar GA (2002) Involvement and interaction of various signalling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult 71:181–212CrossRefGoogle Scholar
  299. Sudherson CS, Manuel J, Al-Sabah L (2008) Haploid plant production from pollen grains of sturt’s desert pea via somatic embryogenesis. Am-Euras Sci Res 3(1):44–47Google Scholar
  300. Sujanya S, Poornasri DB, Sai I (2008) In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. Biosci J 33:113–120CrossRefGoogle Scholar
  301. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43PubMedCrossRefPubMedCentralGoogle Scholar
  302. Takhtajan A (1980) Outline of the classification of flowering plants (Magnoliophytina). Bot Rev (Lancaster) 46:225–359CrossRefGoogle Scholar
  303. Tal M (1994) In vitro selection for salt tolerance in crop plants: theoretical and practical considerations. In Vitro Cell Dev Biol-Plant 30:175–180CrossRefGoogle Scholar
  304. Tanaka N, Takao M, Matsumoto T (2004) Vincamine production in multiple shoot culture derived from hairy roots of Vinca major. Plant Cell Tiss Org Cult J 41:61–64CrossRefGoogle Scholar
  305. Thanutong P, Furusawa I, Yamamota M (1983) Resistant tobacco plants from protoplast-derived calluses selected for their resistance to Pseudomonas and Alternaria toxins. Theor Appl Genet 66:209–215PubMedPubMedCentralGoogle Scholar
  306. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599PubMedCrossRefPubMedCentralGoogle Scholar
  307. Tilkat E, Onay A, Yildirim H, Ayaz E (2009) Direct plant regeneration from mature leaf explants of pistachio, Pistacia vera L. Scientia Hort 121(3):361–365CrossRefGoogle Scholar
  308. Tippmann HF, Schlüter U, Collinge DB (2006) Common themes in biotic and abiotic stress signalling in plants. In: Floriculture, ornamental and plant biotechnology. Global Science Books, Ikenobe, pp 52–67Google Scholar
  309. Tiwari KK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep J 26:199–210CrossRefGoogle Scholar
  310. Tomar UK, Dantu PK (2010) Protoplast culture and somatic hybridization. Cellular and biochemical science. IK International House Pvt. Ltd., New Delhi, pp 876–891Google Scholar
  311. Toyoda H, Chatani K, Matsuda Y, Ouchi S (1989) Multiplication of tobacco mosaic virus in tobacco callus tissues and in vitro selection for viral disease resistance. Plant Cell Rep 8:433–436PubMedCrossRefPubMedCentralGoogle Scholar
  312. Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Develop Biol Plant 43:51–58CrossRefGoogle Scholar
  313. Umamaheswai A, Lalitha V (2007) In vitro effect of various growth hormones in Capsicum annum L. on the callus induction and production of Capsiacin. Plant Sci J 2:545–551CrossRefGoogle Scholar
  314. Vajrabhaya M, Thanapaisal T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8:411–414PubMedCrossRefPubMedCentralGoogle Scholar
  315. Vallejo F, Garcia-Viguera C, Tomas-Barberan FA (2003) Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. J Agric Food Chem 51:3776–3782PubMedCrossRefPubMedCentralGoogle Scholar
  316. Van Poecke RMP, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928PubMedCrossRefPubMedCentralGoogle Scholar
  317. Vasil IK (1976) The progress. Problems, and prospects of plant protoplast research. Adv Agron 28:119–160CrossRefGoogle Scholar
  318. Venkatachalam P, Jayabalan N (1996) In vitro screening of groundnut (Arachis hypogaea L.) cell lines and regeneration of plants resistant to pathotoxic culture filtrate of Cercosporidium personatum. Plant Tissue Cult 6:73–82Google Scholar
  319. Verhoeven DTH, Verhagen H, Goldbohm RA, vandenBrandt PA, van Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables. Chem Biol Interact 103:79–129PubMedCrossRefPubMedCentralGoogle Scholar
  320. Verma PC, Singh D, Rahman L, Gupta MM, Banerjee S (2002) In vitro studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yeilding hairy root cultures. Plant Physiol J 159:547–552CrossRefGoogle Scholar
  321. Vidhyasekaran P, Ling DH, Borromeo ES, Zapata FJ, Mew TW (1990) Selection of brown spot-resistant rice plants from Helminthosporium oryzae toxin resistant calluses. Ann Appl Biol 117:515–523CrossRefGoogle Scholar
  322. Vierling E (1997) The small heat shock proteins in plants are members of an ancient family of heat induced proteins. Acta Physiol Plant 19(4):539–547CrossRefGoogle Scholar
  323. Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry (Morus spp.) for salinity tolerance. Plant Cell Rep 22:350–357PubMedCrossRefPubMedCentralGoogle Scholar
  324. Vijayasree N, Udayasri P, Aswani KY, Ravi BB, Phani KY, Vijay VM (2010) Advancements in the production of secondary metabolites. J Nat Prod 3:112–123Google Scholar
  325. Wagiah ME, Alam G, Wiryowidagdo S, Attia K (2008) Imporved production of the indole alkaloid cathin-6-one from cell suspension cultures of Brucea javanica (L.) Merr. Sci Technol J 1:1–6Google Scholar
  326. Wang HQ, Yu JT, Zhong JJ (1999) Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy. Process Biochem J 35:479–483CrossRefGoogle Scholar
  327. Wang J, Zhang L, Cao Y, Qi C, Li S, Liu L, Wang G, Mao A, Ren S, Guo Y-D (2018) CsATAF1 positively regulates drought stress tolerance by an ABA-Dependent pathway and by promoting ROS scavenging in cucumber. Plant Cell PhysiolPubMedCrossRefPubMedCentralGoogle Scholar
  328. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  329. Watad AEA, Reinhold L, Lerner HR (1983) Comparison between a stable NaCl selected Nicotiana cell line and the wild type. Plant Physiol 73:624–629PubMedPubMedCentralCrossRefGoogle Scholar
  330. Winicov I (1996) Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci 13:105–111CrossRefGoogle Scholar
  331. Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 82:189–200CrossRefGoogle Scholar
  332. Xiong ZT, Liu C, Geng B (2006) Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol Environ Saf 64:273–280PubMedCrossRefPubMedCentralGoogle Scholar
  333. Xu H, Kim YK, Suh SY, Udin MR, Lee SY, Park SU (2008) Deoursin production from hairy root culture of Angelica gigas. Korea Soc Appl Biol Chem J 51:349–351CrossRefGoogle Scholar
  334. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620PubMedCrossRefPubMedCentralGoogle Scholar
  335. Yang Z, Yang X, Huang D (1998) Studies on somaclonal variants for resistance to scab in bread wheat (Triticum aestivum L.) through in vitro selection for tolerance to deoxynivalenol. Euphytica 101:213–219CrossRefGoogle Scholar
  336. Ye JM, Kao KN, Harvey BL, Rossnagel BG (1987) Screening salt-tolerant barley genotypes via F1 anther culture in salt stress media. Theor Appl Genet 74:426–429PubMedCrossRefPubMedCentralGoogle Scholar
  337. Yesil-Celiktas O, Gurel A, Vardar-Sukan F (2010) Large scale cultivation of plant cell and tissue culture in bioreactors. Transworld Res Network:1–54Google Scholar
  338. Yokoi S, Bressan RA, Hasegawa PM (2002) Salt stress tolerance of plants. JIRCAS Working Rep 23(1):25–33Google Scholar
  339. Yu XM, Griffith M (2001) Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiol Plant 112:78–86PubMedCrossRefPubMedCentralGoogle Scholar
  340. Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci 98(17):9630–9635CrossRefGoogle Scholar
  341. Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73:237–244CrossRefGoogle Scholar
  342. Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197CrossRefGoogle Scholar
  343. Zenk MH (1974) Haploids in physiological and biochemical research. In: Kasha KJ (ed) Haploids in higher plants, advances and potential. University Guelph, Canada, pp 339–353Google Scholar
  344. Zhao J, Zhu W, Hu Q (2001) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microbiol Technol J 28:673–681CrossRefGoogle Scholar
  345. Zhao TJ, Liu Y, Yan YB, Feng F, Liu WQ, Zhou HM (2007) Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Lett 581:3044–3050PubMedCrossRefPubMedCentralGoogle Scholar
  346. Zhu ZL (2000) Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ Sci 9(1):1–6Google Scholar
  347. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nelofer Jan
    • 1
  • Hilal Ahmad Qazi
    • 1
  • Salika Ramzan
    • 1
  • Riffat John
    • 2
    Email author
  1. 1.Molecular Biology laboratory, Department of Botany, University of KashmirSrinagarIndia
  2. 2.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations