Ancient and Modern Concepts About the Asteraceae Taxonomy

  • Gustavo C. GibertiEmail author


This chapter provides an update on the systematics of Asteraceae (formerly known as Compositae), which is the largest vascular plant family. This update includes the changes of concepts that have occurred from the old times of the elementary recognition of the Asteraceae as a natural group of angiosperms in the last decades of the eighteenth century up to the advanced plant systematics trends of the twenty-first century. This contribution is to provide non-scholars in neither botany nor plant systematics some knowledge about this complex mega-family, its infra-familial relationships and the nomenclatural crossroads.


Asteraceae Plant systematics New concepts Cladistic studies Infra-familial taxonomy 



The author wishes to thank CONICET and Universidad de Buenos Aires, Argentina, for the financial support given to his research group and also to the numerous colleagues and fellows for their useful suggestions about botanical issues about Asteraceae.


  1. Anderberg AA (1989) Phylogeny and reclassification of the tribe Inuleae (Asteraceae). Can J Bot 67:2277–2296CrossRefGoogle Scholar
  2. Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae), Opera Bot, vol 104. Council for Nordic Publications in Botany, Copenhagen, pp 1–195Google Scholar
  3. Anderberg AA, Eldenäs P, Bayer RJ et al (2005) Evolutionary relationships in the Asteraceae tribe Inuleae (incl. Plucheeae) evidenced by DNA sequences of ndhF: with notes on the systematic position of some aberrant genera. Org Divers Evol 5:135–116CrossRefGoogle Scholar
  4. Angulo MB, Dematteis M (2006) Números cromosómicos en especies sudamericanas de la tribu Vernonieae (Asteraceae) y su implicancia taxonómica. In: Abstracts of the LVII Congresso Nacional de Botânica, GramadoGoogle Scholar
  5. Angulo MB, Dematteis M (2015) Karyotypes of some species of the genus Lessingianthus (Vernonieae, Asteraceae) and taxonomic implications. Nordic. J Bot 33:239–248Google Scholar
  6. Bentham G (1873) Compositae. Bentham G Hooker JD Genera plantarum 2 (1):163–533. Lovell Reeve and Co., LondonGoogle Scholar
  7. Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer Science and Business Media/Springer, WienCrossRefGoogle Scholar
  8. Bonifacino JM (2009) Taxonomic revision of the Chiliotrichum group sensu stricto (Compositae: Astereae). Smithson Contrib Bot 92:1–118CrossRefGoogle Scholar
  9. Bonifacino M, Funk VA (2012) Phylogenetics of the Chiliotrichum group (Compositae, Astereae). The story of the fascinating radiation in the paleate Astereae genera from southern South America. Taxon 61(1):180–196Google Scholar
  10. Bremer K (1994) Asteraceae: Cladistics and classification. Timber Press, PortlandGoogle Scholar
  11. Brown R (1817) Observations on the natural plant family of plants called Compositae. Trans Linnean Soc 12(1):41–142Google Scholar
  12. Bruno M, Bancheva S, Rosselli S et al (2013) Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): distribution, 13 C NMR spectral data and biological properties. Phyochemistry 95:19–93CrossRefGoogle Scholar
  13. Cabrera AL (1962/1961) Compuestas Argentinas, clave para la determinación de los géneros. Revista Mus Arg Cienc Nat Bernardino Rivadavia, Bot 2(5):291–362Google Scholar
  14. Cabrera AL (1963) Compuestas. In: Cabrera AL (ed) Flora de la Provincia de Buenos Aires, 6. Colección Científica del Instituto Nacional de Tecnología Agropecuaria (INTA) 4, Buenos AiresGoogle Scholar
  15. Cabrera AL (1965) Revisión del género Mutisia (Compositae). Opera Lilloana 13:5–227Google Scholar
  16. Cabrera AL (1971a) Revisión del género Gochnatia. Revista del Museo de La Plata, Secc. Bot 12(66):1–160Google Scholar
  17. Cabrera AL (1971b) Compositae. In: Correa MN (ed) Flora Patagónica, parte VII. Colección Científica del Instituto Nacional de Tecnología Agropecuaria (INTA) 8, Buenos AiresGoogle Scholar
  18. Cabrera AL (1974) Compositae, Compuestas. In: Burkart A (ed) Flora Ilustrada de Entre Rios (Argentina), parte VI: Dicotiledóneas Metaclamídeas (Gamopétalas) B: Rubiales, Cucurbitales, Campanulales (Incluso Compuestas). Colección Científica del Instituto Nacional de Tecnología Agropecuaria (INTA) 6, pp 106–554Google Scholar
  19. Cabrera AL (1977) Mutisieae – systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae. Academic Press, London, pp 1039–1066Google Scholar
  20. Cabrera AL (1978) Compositae. In: Cabrera AL (ed) Flora de la Provincia de Jujuy, República Argentina. X. Colección Científica del Instituto Nacional de Tecnología Agropecuaria (INTA), vol 13. INTA, Buenos Aires, pp 9–726Google Scholar
  21. Cabrera AL (1982) Revisión del género Nassauvia (Compositae). Darwin 24:283–379Google Scholar
  22. Cabrera AL, Freire SE (1998) Compositae V. Asteroideae. Inuleae. Mutisieae. In: Spichiger R and Ramella L (eds) Flora del Paraguay, 27. Conservatoire et Jardin botaniques de la Ville de Genève – Missouri Botanical Garden, pp 9–223Google Scholar
  23. Cabrera AL, Klein RM (1973) Compostas. Tribe: Mutisieae. In: Reitz R (ed) Flora Ilustrada Catarinense I, Fascículo COMP, Itajaí, pp 1–124Google Scholar
  24. Cabrera AL, Klein RM (1975) Compostas. Tribe: Senecioneae. In: Reiotz R (ed) Flora Ilustrada Catarinense I, Fascículo COMP, Itajaí, pp 127–222Google Scholar
  25. Cabrera AL, Ragonese AM (1978) Revisión del género Pterocaulon (Compositae). Darwin 21(2–4):188–257Google Scholar
  26. Cabrera AL, Freire SE, Ariza Espinar L (1999) Asteraceae, parte 13. Tribu VIII. Senecioneae. Tribe VIII bis. Liabeae. In: Hunziker AT (ed) Flora Fanerogámica Argentina 62. IMBIV, CٕórdobaGoogle Scholar
  27. Cabrera AL, Dematteis M and Freire SE (2009) Compositae VI. Asteroideae. Senecioneae. Vernonieae. In: Loizeau, P-A (dir) Flora del Paraguay, 39. Conservatoire et Jardin botaniques de la Ville de Genève – Missouri Botanical Garden, pp 9–298Google Scholar
  28. Carlquist S (1976) Tribal interrelationships and phylogeny of the Asteraceae. Aliso 8:465–492CrossRefGoogle Scholar
  29. Crisci JV (1980) Evolution in the subtribe Nassauviinae (Compositae, Mutisieae): a phylogenetic reconstruction. Taxon 29(2–3):213–224CrossRefGoogle Scholar
  30. Crisci JV (1982) Parsimony in evolutionary theory: law or methodological prescription? J Theor Biol 97:35–41CrossRefGoogle Scholar
  31. Crisci JV, López Armengol MF (1983) Introducción a la teoría y práctica de la taxonomía numérica. Monografía N 26, Serie de Biología, Secretaría General de la Organización de Estados Americanos, Washington DCGoogle Scholar
  32. Crisci JV, Stuessy TF (1980) Determining primitive character states for phylogenetic reconstruction. Syst Bot 5:112–135CrossRefGoogle Scholar
  33. de Candolle AP (1836) Compositae. In: de Candolle AP. Prodromus systematis naturalis regni vegetabilis 5. Treuttel et Würtz, Paris, pp 4–695Google Scholar
  34. de Candolle AP (1838) Mantissa Compositarum. In: Candolle AP de. Prodromus systematis naturalis regni vegetabilis 7. Treuttel et Würtz, Paris, pp 263–307Google Scholar
  35. de Cassini AHG (1816) Quatrieme memoire sur la famille des Synantherées contenant l’analyse de l’ovaire et des ses accesoires. J Phys Chim Hist Nat Arts 85:5–21Google Scholar
  36. Dematteis M (1997) Estudios cromosómicos en Vernonia platensis (Asteraceae) y especies afines. Bonplandia 9:259–264Google Scholar
  37. Dematteis M (2004) Taxonomía del complejo Vernonia rubricaulis (Vernonieae, Asteraceae). Bonplandia 13:5–13Google Scholar
  38. Dematteis M (2009a) Revisión taxonómica del género sudamericano Chrysolaena (Vernonieae, Asteraceae). Bol Soc Argent Bot 44(1–2):103–170Google Scholar
  39. Dematteis M (2009b) Tribu Vernonieae. In: Hurrell J A (dir), Flora Rioplatense. Parte 2 Dicotiledóneas, vol. 7a. Buenos Aires, Sociedad Argentina de Botánica, pp 244–266Google Scholar
  40. Devos N, Barker NP, Nordenstam B et al (2010) A multi-locus phylogeny of Euryops (Asteraceae, Senecioneae) augments support for the “cape to Cairo” hypothesis of floral migrations in Africa. Taxon 59(1):57–67Google Scholar
  41. Dumortier BCJ (1822) Commentationes botanicae. Obsertvations botaniques dédiées à la. Societé d´ Horticulture de Tournay, TournayGoogle Scholar
  42. Emerenciano VP, Militão JS, Campos CC et al (2001) Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol 29:947–957CrossRefPubMedGoogle Scholar
  43. Ernst M (2013) Metabolomics in plant taxonomy: the Arnica model. Corrected version of the master’s thesis presented to the Post-Graduate Program in Pharmaceutical Sciences. Faculty of Pharmaceutical Siences of Ribeirão Preto/USPGoogle Scholar
  44. Estabrook G (1972) Cladistic methodology: a discussion of the theoretical basis for the introduction of evolutionary history. Annu Rev Ecol Syst 3:427–456CrossRefGoogle Scholar
  45. Francisco IA, Pimenta Pinotti MH (2000) Cyanogenic glycosides in plants. Braz Arch Biol Technol 43(5):487–492CrossRefGoogle Scholar
  46. Freire S (2008) Asteraceae. In: Zuloaga FO, Morrone O and Belgrano MJ (eds) Catálogo de las plantas vasculares del Cono Sur (Argentina, Sur de Brazil, Chile, Paraguay y Uruguay), vol 2. Monogr Syst Bot Missouri Botanical Garden 107, pp 1154–1565Google Scholar
  47. Freire S (2009a) Generalidades e importancia de las Asteráceas. In: Freire S, Molina AM (eds) Flora Chaqueña -Argentina- Familia Asteraceae. Colección Científica del INTA, Buenos Aires, pp 27–45Google Scholar
  48. Freire S (2009b) Tribe Gnaphalieae. In: Hurrell JA (ed) Flora Rioplatense - Parte 2 Dicotiledóneas, vol. 7a. Sociedad Argentina de Botánica, Buenos Aires, pp 133–207Google Scholar
  49. Freire S (2013) Asteraceae. In: Hurrell JA (ed) Flora Rioplatense. Parte 2 Dicotiledóneas, vol 7a, Sociedad Argentina de Botánica, Buenos Aires, pp 12–20Google Scholar
  50. Freire S, Iharlegui L (1997) Sinopsis preliminar del género Gamochaeta (Asteraceae, Gnaphalieae). Bol Soc Argent Bot 33:23–35Google Scholar
  51. Funk VA (1985) Cladistics and generic concepts in the Compositae. Taxon 34:72–80CrossRefGoogle Scholar
  52. Funk VA (1997) Xenophyllum, a new Andean genus extracted from Werneria s.L. (Compositae: Senecioneae). Novon 7:235–241CrossRefGoogle Scholar
  53. Funk VA, Stuessy TF (1978) Cladistics for the practising plant taxonomist. Syst Bot 3:159–178CrossRefGoogle Scholar
  54. Funk VA, Susanna A, Stuessy TF, et al (eds) (2009) Systematics, evolution and biogeography of the compositae. IAPT, pp 965Google Scholar
  55. Funk VA, Sancho G, Roque N et al (2014) A phylogeny of the Gochnatieae: understanding a critically placed tribe in the Compositae. Taxon 63:859–882CrossRefGoogle Scholar
  56. Giseke PD (1792) Praelectiones in ordines naturales plantarum. BG Hoffman, HamburgGoogle Scholar
  57. Granica S, Zidorn C (2015) Phenolic compounds from aerial parts as chemosystematic markers in the Scorzonnerinae (Asteraceae). Biochem Syst Ecol 58:102–113CrossRefGoogle Scholar
  58. Gutiérrez DG (2003) Reincorporación del género Liabum (Asteraceae, Liabeae) a la flora argentina y primer registro de L. acuminatum para el país. Darwin 41:55–59Google Scholar
  59. Gutiérrez DG (2010) Inkaliabum, a new Andean genus of Liabeae (Asteraceae) from Perú. Bol Soc Argent Bot 45:363–372Google Scholar
  60. Gutiérrez DG, Katinas L (2015) Systematics of Liabum Adans. (Asteraceae, Liabeae). Syst Bot Monogr 97:1–121CrossRefGoogle Scholar
  61. Gutiérrez DG, Luna M (2013) A comparative study of latex-producing tissues of Liabeae (Asteraceae). Flora 208:33–44CrossRefGoogle Scholar
  62. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, ChampaignGoogle Scholar
  63. Hernández MP, Katinas L, Arambarri AM (2015) Taxonomic value of histochemical features of the style in early lineages of Asteraceae. Acta Bot Bras 29(4):575–585CrossRefGoogle Scholar
  64. Heywood VH, Harborne JB, Turner BL (eds) (1977) The biology and chemistry of the Compositae. Academic Press, LondonGoogle Scholar
  65. Hoffmann O (1894) Compositae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol 4(5), pp 87–402Google Scholar
  66. Hristozov D, Da Costa FB, Gasteiger J (2007) Sesquiterpene lactones-based classification of the family Asteraceae using neural networks and k-nearest neighbors. J Chem Inf Model 47:9–19CrossRefPubMedGoogle Scholar
  67. Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84:5818–5822CrossRefPubMedGoogle Scholar
  68. Jeffrey C (2007) Compositae. Introduction and key to the tribes. In: Kubitzki K (ed) The families and genera of vascular plants VIII. Asterales. Springer, Berlin, pp 61–87Google Scholar
  69. Katinas L (1994) Un nuevo género de Nassauviinae (Asteraceae, Mutisieae) y sus relaciones cladísticas con los géneros afines de la subtribu. Bol Soc Argent Bot 30(1):59–70Google Scholar
  70. Katinas L (1996) revisión de las especies sudamericanas del género Trixis (Asteraceae, Mutisieae). Darwin 34(1–4):27–108Google Scholar
  71. Katinas L, Gutiérrez DG, Grossi MA et al (2007) Panorama de la familia Asteraceae (=Compositae) en la Argentina. Bol Soc Argent Bot 42(1–2):113–129Google Scholar
  72. Katinas L, Pruski J, Sancho G et al (2008) The subfamily Mutisioideae (Asteraceae). Bot Rev 74:469–716CrossRefGoogle Scholar
  73. Katinas L, Sancho G, Tellería MC et al (2009) The Mutisieae (Mutisioideae sensu stricto). In: Funk VA et al (eds) Systematics, evolution and biogeography of Compositae. IAPT, Vienna, pp 229–248Google Scholar
  74. King RM, Robinson H (1970) The new synantherology. Taxon 19:6–11CrossRefGoogle Scholar
  75. King RM, Robinson H (1987) The genera of Eupatorieae (Asteraceae). Monographs in systematic botany from the Missouri botanical garden. Missouri Botanical Garden, St LouisGoogle Scholar
  76. Lessing CF (1832) Synopsis generum compositarum earunque dispositionis novae tentamen, monographis multarum Capensium interjectis. Berolini: sumtibus Dunckeri et Humblotii, LeipzigGoogle Scholar
  77. Mandel JR, Dikow RB, Funk VA (2015) Using phylogenomics to resolve mega-families. An example from Compositae. J Syst Evol 53(5):391–402CrossRefGoogle Scholar
  78. Nesom GL (1994) Subtribal classification of the Astereae (Asteraceae). Phytologia 76(3):193–274Google Scholar
  79. Nordenstam B, Pelser PB, Kadereit JW et al (2009) Senecioneae. In: Funk Vaet al. (eds). Systematics, evolution and biogeography of the Compositae. IAPT, Wien, pp 503–526Google Scholar
  80. Panero JL, Funk V (2002) Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). Proc Biol Soc Wash 115(4):909–922Google Scholar
  81. Panero JL, Funk V (2008) The major clades of the Asteraceae (Compositae) revisited. Mol Phylogenet Evol 47:757–782CrossRefPubMedGoogle Scholar
  82. Pelser PB, Nordenstam B, Kadereit JW et al (2007) An ITS phylogeny of the tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104CrossRefGoogle Scholar
  83. Rios MY (2012) Natural alkamides: pharmacology, chemistry and distribution. In: Vallisuta O, Olimat SM (eds) Analytical evaluation of herbal drugs. Drugs discovery and research in Pharmacognosy. Intechopen, Rijeka, pp 107–144Google Scholar
  84. Robinson HE (1988) Studies in the Lepidaploa complex (Vernonieae, Asteraceae) V. The new genus Chrysolaena. Proc Biol Soc Wash 101:95–158Google Scholar
  85. Robinson HE (1999) Generic and subtribal classification of American Vernonieae. Smithson Contrib Bot 89:1–116CrossRefGoogle Scholar
  86. Robinson H, Brettel RD (1973) Tribal revision in the Asteraceae III. A new tribe, Liabeae. Phytologia 25:404–407Google Scholar
  87. Roque N, Funk VA (2013) Morphological characters add support for some members of the basal grade of Asteraceae. J Linn Soc Bot 171(3):568–586CrossRefGoogle Scholar
  88. Sáenz AA (1981) Anatomía y morfología de frutos de Heliantheae (Asteraceae). Darwin 23:37–117Google Scholar
  89. Scotti MT, Emerenciano V, Ferreira MJ et al (2012) Self-organizing maps of molecular descriptors for sesquiterpene lactones and their application to the chemotaxonomy of the Astereceae family. Molecules 17(4):4684–4702CrossRefPubMedGoogle Scholar
  90. Seaman FC (1982) Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev 48:121–194CrossRefGoogle Scholar
  91. Seaman FC, Funk VA (1983) Cladistic analysis of complex natural products: developing transformation series from sesquiterpene lactone data. Taxon 32(1):1–27CrossRefGoogle Scholar
  92. Seaman F, Bohlmann F, Zdero C et al (1990) Diterpenes of flowering plants. Compositae (Asteraceae). Springer, New YorkCrossRefGoogle Scholar
  93. Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. Freeman, San FranciscoGoogle Scholar
  94. Stevens PF (1991) Character states, morphological variation, and phylogenetic analysis: a review. Syst Bot 16:553–583CrossRefGoogle Scholar
  95. Stuessy TF (2002) Morfología profunda en la Sistemática de plantas. Paper presented at the XXVIII Jornadas Argentinas de Botánica, Sociedad Argentina de Botánica, Santa Rosa, 21–25 October 2001Google Scholar
  96. Stuessy TF, Funk VA (2013) New trends in plant systematics – introduction. Taxon 62(5):873–875CrossRefGoogle Scholar
  97. Tellería MC, Sancho G, Funk VA et al (2013) Pollen morphology and its taxonomic significance in the tribe Gochnatieae (Compositae, Gochnatioideae). Plant Syst Evol 299:935–948CrossRefGoogle Scholar
  98. von Berchtold FG, Presl JS (1820) O přirozenosti rostlin, obsahugjcj. Krala Wiljma Endersa, PrahaGoogle Scholar
  99. Wagenitz G (1976) Systematics and phylogeny of the Compositae. Plant Syst Evol 125:29–46CrossRefGoogle Scholar
  100. Wiley EO (1981) Phylogenetics: the theory and practice of Phylogenetics systematics. Wiley, New YorkGoogle Scholar
  101. Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69(12):2270–2296CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de Farmacia y BioquímicaBuenos AiresArgentina
  2. 2.CONICET – Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco – CONICET (IQUIMEFA)Buenos AiresArgentina

Personalised recommendations