Skip to main content

Anti-inflammatory Activity

  • Chapter
  • First Online:
Sesquiterpene Lactones

Abstract

It is known that inflammation involves a complex series of protective and reparative responses to tissue injury caused by either mechanical and autoimmune stimuli or infection. Inflammation can be either acute or chronic. In the acute phase, in the early stages of inflammation, neutrophils, macrophages, and dendritic cells contribute to cytokine production that spreads the inflammatory events. Although inflammation has a protective role, many diseases have the etiological origin in inflammatory processes such as atherosclerosis, arthritis, cancer, and ischemic heart disease. There are many pathways involving the synthesis and secretion of pro-inflammatory mediators. In this chapter we analyze different intracellular signaling routes related to inflammation. There are two principal types of anti-inflammatory drugs, namely, steroidal anti-inflammatory drugs, which reduce inflammation by binding to cortisol receptors and nonsteroidal anti-inflammatory drugs, which decrease damage by inhibition of cyclooxygenase enzymes. These anti-inflammatory drugs entail many risks, in particular, gastrointestinal ulceration, bleeding, and hepatotoxicity. Over the last decades, the potential of sesquiterpene lactones as anti-inflammatory agents has been pointed out by different authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

activator protein-1

ARE:

antioxidant response element

C:

complement component

Chemokine R:

chemokine receptors

COX-2:

ciclooxigenase 2

CR:

complement receptor

CysLTs:

cysteinyl leukotrienes

Cytokine R:

cytokine receptors

DAMPs:

damage-associated molecular patterns

ERK:

extracellular signal-regulated kinase

HO-1:

heme oxygenase 1

IFN-γ:

interferon-γ

IKK:

IκB kinase

IL:

interleukins

IL-1ra:

IL-1 receptor antagonist

IL-1RAcP:

IL-1 receptor accessory protein

IL-1RI:

IL-1 type 1 receptor

IL-1RII:

IL-1 type 2 receptor

iNOS:

inducible type-2 isoform of nitric oxide synthase NOS-2

JAKs:

Janus kinases

JNK:

c-Jun N-terminal kinase

LPS:

lipopolysaccharide

LTs:

leukotrienes

MAPKs:

mitogen-activated protein kinases

MCP-1:

monocyte chemoattractant protein 1

MSU:

monosodium urate

NF-κB:

nuclear factor kappa B

NLRP3:

inflammasome complex Nod-like receptor family pyrin domain containing 3

NLRs:

Nucleotide-binding oligomerization-domain protein-like receptors

Nrf2:

factor (erythroid-derived 2)-related factor 2

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PAMPs:

pathogen-associated molecular patterns

PGs:

prostaglandins

PLA2:

phospholipase A2

PMNs:

polymorphonuclear neutrophils

Purine R:

purine receptors

RLRs:

RIG-I-like (retinoic acid inducible gene 1) receptor family

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

STATs:

signal transducers and activators of transcription

STLs:

sesquiterpene lactones

TGF:

tumor growth factor

Th:

helper T cells

TLRs:

Toll-like receptors

TNF-α:

tumor necrosis factor alpha

TXs:

thromboxanes

TyK2:

tyrosine kinase 2

References

  • Atreya R, Neurath MF (2008) Signaling molecules: the pathogenic role of the IL6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 9:369–374

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kB in the immune system. Rev Immunol 12:141–179

    Article  CAS  Google Scholar 

  • Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179:53–56. https://doi.org/10.1016/0304-3940(94)90933-4. PMID 7845624

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Braddock M, Quinn A (2004) Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov 3:1–10

    Article  CAS  Google Scholar 

  • Butturini E, Cavalieri E, de Prati AC et al (2011) Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One 6:e20174. https://doi.org/10.1371/journal.pone.0020174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butturini E, Paola RD, Suzuki H (2014) Costunolide and dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol 730:107–115

    Article  CAS  PubMed  Google Scholar 

  • Choy EHS, Panayi GS (2001) Cytokine 9 pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916. https://doi.org/10.1056/NEJM200103223441207

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Guzman ML, Chen S et al (2010) The NF (Nuclear factor)-κB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells. Br J Haematol 151:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danese S, Mantovani A (2010) Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene 29:3313–3323

    Article  CAS  PubMed  Google Scholar 

  • Davicino R, Alonso MR, Anesini C et al (2015) Preventive anti-inflammatory activity of an aqueous extract of larrea divaricata cav. and digestive and hematological toxicity. Int J Pharm Sci Res 6:3215–3223

    Google Scholar 

  • De Bosscher K, Haegeman G (2009) Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 23:281–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Prati AC, Ciampa AR, Cavalieri E et al (2005) STAT1 as a new molecular target of anti-inflammatory treatment. Curr Med Chem 12:1819–1828

    Article  PubMed  Google Scholar 

  • Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (1996) Biological basis for Interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  • Dinarello CA (2004) Therapeutic strategies to reduce IL-1 activity in treating local and systemic inflammation. Curr Opin Pharmacol 4:378–385

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Qiao H, Zhang X et al (2013) Parthenolide is neuroprotective in rat experimental stroke model: downregulating NF-κB, phospho-p38MAPK, and caspase-1 and ameliorating BBB permeability. Mediat Inflamm 2013:370804. https://doi.org/10.1155/2013/370804

    Article  CAS  Google Scholar 

  • Ferrero-Miliani L, Nielsen OH, Andersen PS et al (2007) Chronic inflammation: importance of nod2 and nalp3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235

    PubMed  PubMed Central  CAS  Google Scholar 

  • Funk CD, FitzGerald GA (2007) COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol 50:470–479

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-kB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  • Gitlin JD, Colten HR (1987) Molecular biology of acute phase plasma proteins. In: Pick F (ed) Lymphokines, vol 14. Academic Press, San Diego, pp 123–153

    Chapter  Google Scholar 

  • Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897

    Article  CAS  PubMed  Google Scholar 

  • Heinrich PC, Behrmann I, Müller-Newen G et al (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334:297–314. https://doi.org/10.1042/bj3340297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hohmann MS, Longhi-Balbinot DT, Guazelli CF et al (2016) Sesquiterpene lactones: structural diversity and perspectives as anti-inflammatory molecules. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 49. Elsevier, Amsterdam, pp 243–264

    Google Scholar 

  • Jeong WS, Keum YS, Chen C et al (2005) Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. Biochem Mol Biol 38:167–176

    CAS  Google Scholar 

  • Juliana C, Fernandes-Alnemri T, Wu J et al (2010) Anti-inflammatory compounds parthenolide and bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285:9792–9802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HW, Mahesh R, Park JH et al (2010) Effect of Sesbania grandiflora on lung antioxidant defense system in cigarette smoke exposed rats. Int Immunopharmacol 10:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1–38

    PubMed  CAS  Google Scholar 

  • Kang T, Han N, Kim H et al (2011) Blockade of IL-6 secretion pathway by the sesquiterpenoid atractylenolide III. J Nat Prod 74:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Park YS, Paik HD et al (2011) Effect of anthocyanins on expression of matrix metalloproteinase-2 in naproxen-induced gastric ulcers. Br J Nutr 106:1792–1801

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury S, Conaghan P, McDermott MF (2011) The role of the NLRP3 inflammasome in gout. J Inflamm Res 4:39–49

    PubMed  PubMed Central  CAS  Google Scholar 

  • Landis RC, Haskard DO (2001) Pathogenesis of crystal-induced inflammation. Curr Rheumatol Rep 1:36–41

    Article  Google Scholar 

  • Lee J, Tae N, Lee JJ et al (2010) Effect of MF on NO production and iNOS expression levels in LPS-stimulated RAW264.7 cells. Eur J Pharmacol 636:173–180

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cui X, Li Y et al (2006) Parthenolide has limited effects on nuclear factor-kappa beta increases and worsens survival in lipopolysaccharide-challenged C57BL/6J mice. Cytokine 33:299–308

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang Y, Xia M et al (2014) Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis. PLoS One 9:e87552. https://doi.org/10.1371/journal.pone.0087552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Peng Z, Su C (2015) Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 16:10888–10906

    Article  CAS  Google Scholar 

  • Li-Weber M, Palfi K, Giaisi M et al (2005) Dual role of the anti-inflammatory sesquiterpene lactone: regulation of life and death by parthenolide. Cell Death Differ 12:408–409

    Article  CAS  PubMed  Google Scholar 

  • Lyss G, Knorre A, Schmidt TJ et al (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 273:33508–33516

    Article  CAS  PubMed  Google Scholar 

  • Mariotto S, Esposito E, Di Paola R et al (2008) Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice. Pharmacol Res 57:110–124

    Article  PubMed  Google Scholar 

  • Mathema VB, Koh Y, Thakuri B et al (2012) Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 35:560–565

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Toguchida I, Ninomiya K et al (2003) Effects of sesquiterpenes and amino acid-sesquiterpene conjugates from the roots of Saussurea lappa on inducible nitric oxide synthase and heat shock protein in lipopolysaccharide-activated macrophages. Bioorg Med Chem 11:709–715

    Article  CAS  PubMed  Google Scholar 

  • Mease P (2002) Tumor necrosis factor (TNF) 36. In psoriatic arthritis: pathophysiology and treatment with TNF inhibitors. Ann Rheum Dis 61:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:28–435

    Article  CAS  Google Scholar 

  • Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Yoshida C, Murakami A et al (2004) Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Lett 572:245–250

    Article  CAS  PubMed  Google Scholar 

  • Nicolete R, Arakawa NS, Rius C et al (2009) Budlein a from Viguiera robusta inhibits leukocyte-endothelial cell interactions, adhesion molecule expression and inflammatory mediators release. Phytomedicine 16:904–915

    Article  CAS  PubMed  Google Scholar 

  • Nuki G (2008) Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr Rheumatol Rep 10:218–227

    Article  CAS  PubMed  Google Scholar 

  • Pae HO, Jeong GS, Kim HS et al (2007) Costunolide inhibits production of tumor necrosis factor-alpha and interleukin-6 by inducing heme oxygenase-1 in RAW264.7 macrophages. Inflamm Res 56:520–526

    Article  CAS  PubMed  Google Scholar 

  • Park EH, Han YM, Jeong M et al (2015) Omega-3 polyunsaturated fatty acids as an angelus custos to rescue patients from NSAID-induced gastroduodenal damage. J Gastroenterol 50:614–625. https://doi.org/10.1007/s00535-014-1034

    Article  PubMed  CAS  Google Scholar 

  • Peschon JJ, Torrance DS, Stocking KL et al (1998) TNF receptor-deficient mice reveals divergent roles for p55 and p75 in several models of inflammation. J Immunol 160:943–952

    PubMed  CAS  Google Scholar 

  • Qin JJ, Wang LY, Zhu JX et al (2011) Neojaponicone A, a bioactive sesquiterpene lactone dimer with an unprecedented carbon skeleton from Inula japonica. Chem Commun 47:1222–1224

    Article  CAS  Google Scholar 

  • Rayan NA, Baby N, Pitchai D et al (2011) Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia. Front Biosci 3:1079–1091

    Google Scholar 

  • Robbins SL, Kumar V, Abbas A et al (2010) Patologia bases patológicas das doenças, 8th edn. Elsevier, Rio de Janeiro

    Google Scholar 

  • Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580

    Article  CAS  Google Scholar 

  • Romano M, Sironi M, Toniatti C et al (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325

    Article  CAS  PubMed  Google Scholar 

  • Ross R, Reske-Kunz AB (2001) The role of nitric oxide in contact hypersensitivity. Int Immunopharmacol 1:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Rummel C, Gerstberger R, Roth J et al (2011) Parthenolide attenuates LPS-induced fever, circulating cytokines and markers of brain inflammation in rats. Cytokine 56:739–748

    Article  CAS  PubMed  Google Scholar 

  • Scarpignato C, Hunt RH (2010) Nonsteroidal antiinflammatory drug-related injury to the gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol Clin North Am 39:433–464

    Article  PubMed  Google Scholar 

  • Scarponi C, Butturini E, Sestito R et al (2014) Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide. PLoS One 16:e107904

    Article  CAS  Google Scholar 

  • Schäcke H, Döcke WD, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43

    Article  PubMed  Google Scholar 

  • Schjerning Olsen AM, Fosbol EL, Lindhardsen J et al (2011) Duration of treatment with nonsteroidal anti-inflammatory drugs and impact on risk of death and recurrent myocardial infarction in patients with prior myocardial infarction: a nationwide cohort study. Circulation 123:2226–2235

    Article  CAS  PubMed  Google Scholar 

  • Siedle B, Garcia-Piñeres AJ, Murillo R et al (2004) Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-KB. Med Chem 47:6042–6054

    Article  CAS  Google Scholar 

  • Smyth EM, Grosser T, Wang M et al (2009) Prostanoids in health and disease. J Lipid Res 50:S423–S428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner H, Salan U, Knight DW et al (1992) Inhibition of 5-lipoxygenase and cyclo-oxygenase in leukocytes by feverfew. Involvement of sesquiterpene lactones and other components. Biochem Pharmacol 43:2313–2320

    Article  CAS  PubMed  Google Scholar 

  • Tamura R, Chen Y, Shinozaki M et al (2012) Eudesmane-type sesquiterpene lactones inhibit multiple steps in the NF-κB signaling pathway induced by inflammatory cytokines. Bioorg Med Chem Lett 22:207–211

    Article  CAS  PubMed  Google Scholar 

  • Teixeira C, Landucci E, Antunes E et al (2003) Inflammatory effects of snake venom myotoxic phospholipases A2. Toxicon 42:947–962

    Article  CAS  PubMed  Google Scholar 

  • Umemura K, Itoh T, Hamada N et al (2008) Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation. Biochem Biophys Res Commun 368:948–954

    Article  CAS  PubMed  Google Scholar 

  • Valerio DA, Cunha TM, Arakawa NS et al (2007) Anti-inflammatory and analgesic effects of the sesquiterpene lactone budlein A in mice: inhibition of cytokine production-dependent mechanism. Eur J Pharmacol 562:155–163

    Article  CAS  PubMed  Google Scholar 

  • Vargas Salazar M (2009) El factor de necrosis tumoral-alfa (fnt-α) en la patogenesis de la artritis reumatoide y el riesgo de tuberculosis con infliximab. Revista Médica de Costa Rica y Centroamérica LXVII 590:345–351

    Google Scholar 

  • Verri WA, Cunha TM, Parada CA et al (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138

    Article  CAS  PubMed  Google Scholar 

  • Wang JX, Hou LF, Yang Y et al (2009) SM905, an artemisinin derivative, inhibited NO and pro-inflammatory cytokine production by suppressing MAPK and NF-κB pathways in RAW 264.7 macrophages. Acta Pharmacol Sin 30:1428–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Huang Z, Wang L et al (2011) Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro. Int J Mol Med 27:233–241

    PubMed  Google Scholar 

  • Wong HR, Menendez IY (1999) Sesquiterpene lactones inhibit inducible nitric oxide synthase gene expression in cultured rat aortic smooth muscle cells. Biochem Bio Res Commun 262:375–380

    Article  CAS  Google Scholar 

  • Xie C, Li X, Wu J et al (2015) Anti-inflammatory activity of magnesium isoglycyrrhizinate through inhibition of phospholipase A2/arachidonic acid pathway. Inflammation 38:1639–1648

    Article  CAS  PubMed  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao HQ, Li WM, Lu ZQ et al (2014) The growing spectrum of anti-inflammatory interleukins and their potential roles in the development of sepsis. J Interf Cytokine Res 35:242–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Rosario Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alonso, M.R., Anesini, C.A., Martino, R.F. (2018). Anti-inflammatory Activity. In: Sülsen, V., Martino, V. (eds) Sesquiterpene Lactones. Springer, Cham. https://doi.org/10.1007/978-3-319-78274-4_14

Download citation

Publish with us

Policies and ethics