Advertisement

Effects on Other Microorganisms

  • María Victoria Castelli
  • Silvia Noelí López
Chapter

Abstract

Sesquiterpene lactones (STLs) are natural and semisynthetic compounds displaying interesting biological activities, including antiprotozoal, anti-inflammatory, and cytotoxic among the most studied. Some compounds belonging to this group have recently been described as promising antimicrobial hits. In this chapter, the antifungal, antibacterial, and antiviral properties will be discussed, taking into account their basic chemical scaffolds.

Keywords

Sesquiterpene lactones Antimicrobial Antifungal Antibacterial Antiviral 

Abbreviations

ATCC

American Type Culture Collection

DNA

Deoxyribonucleic acid

EC50

Half maximal effective concentration

HBeAg

Hepatitis B e antigen

HBsAg

Hepatitis B virus surface antigen

HBV

Hepatitis B virus

IC50

Half-maximal inhibitory concentration

MIC

Minimum inhibitory concentration

MTCC

Microbial Type Culture Collection

References

  1. Akatsuka T, Kodama O, Sekido H et al (1985) Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: Isolation, characterization and biological activities of oryzalexins. Agric Biol Chem 49:1689–1694Google Scholar
  2. Amaya S, Pereira JA, Borkosky SA et al (2012) Inhibition of quorum sensing in Pseudomonas aeruginosa by sesquiterpene lactones. Phytomedicine 19:1173–1177CrossRefPubMedGoogle Scholar
  3. Barrero A, Oltra JE, Álvarez M et al (2000) New sources and antifungal activity of sesquiterpene lactones. Fitoterapia 71:60–64CrossRefPubMedGoogle Scholar
  4. But PHH, He ZD, Ma SC et al (2009) Antiviral constituents against respiratory viruses from Mikania micrantha. J Nat Prod 72:925–928CrossRefPubMedGoogle Scholar
  5. Cartagena E, Colom OA, Neske A et al (2007) Effects of plant lactones on the production of biofilm of Pseudomonas aeruginosa. Chem Pharm Bull 55:22–25CrossRefPubMedGoogle Scholar
  6. Ciric A, Karioti A, Koukoulitsa C et al (2012) Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem Biodivers 9:2843–2853CrossRefPubMedGoogle Scholar
  7. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16CrossRefPubMedGoogle Scholar
  8. Djeddi S, Karioti A, Sokovic M et al (2007) Minor sesquiterpene lactones from Centaurea pullata and their antimicrobial activity. J Nat Prod 70:1796–1799CrossRefPubMedGoogle Scholar
  9. Efferth T, Romero MR, Wolf DG et al (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811CrossRefPubMedGoogle Scholar
  10. Facey P, Pascoe KO, Porter RB et al (1999) Investigation of plants used in Jamaican folk medicine for anti-bacterial activity. J Pharm Pharmacol 51:1555–1560CrossRefGoogle Scholar
  11. Feng JT, Wang H, Ren SX et al (2012) Synthesis and antifungal activities of carabrol ester derivatives. J Agric Food Chem 60:3817–3823CrossRefPubMedGoogle Scholar
  12. Fortuna AM, Juárez ZN, Bach H et al (2011) Antimicrobial activities of sesquiterpene lactones and inositol derivatives from Hymenoxys robusta. Phytochemistry 72:2413–2418CrossRefPubMedGoogle Scholar
  13. Galindo JCG, Hernández A, Dayan FE et al (1999) Dehydrozaluzanin C, a natural sesquiterpenolide, causes plasma membrane leakage. Phytochemistry 52:805–813CrossRefGoogle Scholar
  14. Gökbulut A, Şarer E (2013) Isolation and quantification of alantolactone/isoalantolactone from the roots of Inula helenium subsp turcoracemosa. Turk J Pharm Sci 10:447–452Google Scholar
  15. Goswami S, Bhakuni RS, Chinniah A et al (2012) Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother 56:4594–4607CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hancock REW (2007) The end of an era? Nat Rev Drug Discov 6:28CrossRefGoogle Scholar
  17. Hartmann S, Neeff J, Heer U et al (1978) Arenaemycin (pentalenolactone): a specific inhibitor of glycolysis. FEBS Lett 93:339–342CrossRefPubMedGoogle Scholar
  18. Herz W (1977) Biogenetic aspects of sesquiterpene lactone chemistry. Isr J Chem 16:32–44CrossRefGoogle Scholar
  19. Herz W (1978) Sesquiterpene lactones in the Compositae. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, London, pp 337–357Google Scholar
  20. Hoagland DT, Liu J, Lee RB et al (2016) New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72CrossRefPubMedPubMedCentralGoogle Scholar
  21. Honda G, Yeşilada E, Tabata M et al (1996) Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kiitahya, Denizli, Mu la, Aydln provinces. J Ethnopharmacol 53:75–87PubMedGoogle Scholar
  22. Inoue A, Tamogami S, Kato H et al (1995) Antifungal melampolides from leaf extracts of Smallanthus sonchifolius. Phytochemistry 39:845–848CrossRefGoogle Scholar
  23. Ivanescu B, Miron A, Corciova A (2015) Sesquiterpene lactones from Artemisia Genus: biological activities and methods of analysis. J Anal Methods Chem., Article ID 247685, 21. https://doi.org/10.1155/2015/247685
  24. Jamal W, Bari A, Mothana RA et al (2014) Antimicrobial evaluation and crystal structure of parthenolide from Tarchonanthus camphoratus collected in Saudi Arabia. Asian J Chem 26:5183–5185Google Scholar
  25. Jampilek J (2016) Potential of agricultural fungicides for antifungal drug discovery. Expert Opin Drug Discovery 11:1–9CrossRefGoogle Scholar
  26. Li H, Zhou C, Zhou L et al (2005) In vitro antiviral activity of three enantiomeric sesquiterpene lactones from Senecio species against hepatitis B vírus. Antivir Chem Chemother 16:277–282CrossRefPubMedGoogle Scholar
  27. Li Y, Li J, Wang X et al (2013) Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One 8(10):e76725CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin F, Hasegawa M, Kodama O (2003) Purification and identification of antimicrobial sesquiterpene lactones from Yacon (Smallanthus sonchifolius) leaves. Biosci Biotechnol Biochem 67:2154–2159CrossRefPubMedGoogle Scholar
  29. Lin LT, Hsu WC, Lin CC (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4:24–35CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liu JF, Wang L, Wang YF et al (2015) Sesquiterpenes from the fruits of Illicium jiadifengpi and their anti-hepatitis B virus activities. Fitoterapia 104:41–44CrossRefPubMedGoogle Scholar
  31. Macías FA, Galindo JCG, Molinillo JMG et al (2000) Dehydrozaluzanin C: a potent plant growth regulator with potential use as a natural herbicide template. Phytochemistry 54:165–171CrossRefPubMedGoogle Scholar
  32. Macías FA, Santana A, Durán AG et al (2013) Guaianolides for multipurpose molecular design. In: Beck J, Coats J, Duke S, Koivunen M (eds) Pest management with natural products, vol 1141. ACS, New York, pp 167–188. https://doi.org/10.1021/bk-2013-1141.ch012 CrossRefGoogle Scholar
  33. Maruyama M, Omura S (1977) Carpesiolin from Carpesium abrotanoides. Phytochemistry 16:782–783CrossRefGoogle Scholar
  34. Maruyama M, Shibata F (1975) Stereochemistry of granilin isolated from Carpesium abrotanoides. Phytochemistry 14:2247–2248CrossRefGoogle Scholar
  35. Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cáncer. Curr Drug Targets 12:1560–1573CrossRefPubMedGoogle Scholar
  36. Özçelik B, Gürbüz I, Karaoglu T et al (2009) Antiviral and antimicrobial activities of three sesquiterpene lactones from Centaurea solstitialis L. ssp. solstitialis. Microbiol Res 164:545–552CrossRefPubMedGoogle Scholar
  37. Paeshuyse J, Coelmont L, Vliegen I et al (2006) Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem Biophys Res Commun 348:139–144CrossRefPubMedGoogle Scholar
  38. Picman A (1983) Antifungal activity of helenin and isohelenin. Biochem Syst Ecol 11:183–281CrossRefGoogle Scholar
  39. Rezeng C, Yuan D, Long J et al (2015) Alantolactone exhibited anti-herpes simplex vírus 1 (HSV-1) action in vitro. Biosci Trends 9:420–422CrossRefPubMedGoogle Scholar
  40. Rios VE, León A, Chávez MI et al (2014) Sesquiterpene lactones from Mikania micrantha and Mikania cordifolia and their cytotoxic and anti-inflammatory evaluation. Fitoterapia 94:155–163CrossRefPubMedGoogle Scholar
  41. Romero MR, Efferth O, Serrano MA et al (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antivir Res 68(2005):75–83CrossRefPubMedGoogle Scholar
  42. Seca AML, Silva MAS, Pinto DCG (2017) Parthenolide and parthenolide like sesquiterpene lactones as multiple target drugs: current knowledge and new developments. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 54. Elsevier, Amsterdam, pp 337–352Google Scholar
  43. Takamatsu S, Xu LH, Fushinobu S et al (2011) Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 (SAV_7469) of Streptomyces avermitilis. J Antibiot 64:65–71CrossRefPubMedGoogle Scholar
  44. Vega AE, Wendel GH, Maria AOE et al (2009) Antimicrobial activity of Artemisia douglasiana and dehydroleucodine against Helicobacter pylori. J Ethnopharmacol 124:653–655CrossRefPubMedGoogle Scholar
  45. Wang JF, He WJ et al (2015) Dicarabrol, a new dimeric sesquiterpene from Carpesium abrotanoides L. Bioorg Med Chem Lett 25:4082–4084CrossRefPubMedGoogle Scholar
  46. Wang B, Mei WL, Zeng YB et al (2012) A new sesquiterpene lactone from Elephantopus tomentosus. J Asian Nat Prod Res 14:700–703CrossRefPubMedGoogle Scholar
  47. Wedge DE, Galindo JCG, Macías FA (2000) Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry 53:747–757CrossRefPubMedGoogle Scholar
  48. Wu J, Tang C, Chen L et al (2015) Dicarabrones A and B, a pair of new epimers dimerized from sesquiterpene lactones via a [3 + 2] cycloaddition from Carpesium abrotanoides. Org Lett 17:1656–1659CrossRefPubMedGoogle Scholar
  49. Wu JW, Tang C, Ke CQ et al (2017) Dicarabrol A, dicarabrone C and dipulchellin A, unique sesquiterpene lactone dimers from Carpesium abrotanoides. RSC Adv 7:4639–4644CrossRefGoogle Scholar
  50. Xie C, Sun L, Meng L et al (2015) Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Bioorg Med Chem Lett 25:5409–5411CrossRefPubMedGoogle Scholar
  51. Xu YJ (2013) Phytochemical and biological studies of Chloranthus medicinal plants. Chem Biodivers 10:1754CrossRefPubMedGoogle Scholar
  52. Yang C, Shi YP, Jia ZJ (2002) Sesquiterpene lactone glycosides, eudesmanolides, and other constituents from Carpesium macrocephalum. Planta Med 68:626–630CrossRefPubMedGoogle Scholar
  53. Yang X, Wang C, Yang J et al (2014) Antimicrobial sesquiterpenes from the Chinese medicinal plant, Chloranthus angustifolius. Tetrahedron Lett 55:5632–5634CrossRefGoogle Scholar
  54. Zhang Q, Lu Y, Ding Y et al (2012) Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem 55:8757–8769CrossRefPubMedGoogle Scholar
  55. Zhang JP, Wang GW et al (2015) The genus Carpesium: a review of its ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol 163:173–191CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Farmacognosia – Facultad de Ciencias Bioquímicas y Farmacéuticas – CONICET – Universidad Nacional de Rosario. Suipacha 531(S2002LRK) - RosarioArgentina

Personalised recommendations